Miltenyi Biotec

-

Innovation & Creativity

Research to bedside

Miltenyi Biotec fast facts

1989 Miltenyi Biotec was founded in Germany

Miltenyi Biotec Integrated Workflows

Prerequisite for Single Cell Analysis

- Single cells suspension
- Excellent viability
- Debris & dead cells free

Risks

- Background noise in sequencing data
- Impact on efficiency of cell partitioning
- Impact on Cell Counting Accurancy

Sample Preparation from Tissues

Tools & Innovations

Single Cell Suspensions

MACS Tissue Storage Solution

gentleMACS Octo Dissociator with Heaters

Tissue Dissociation Kits

No clogging

Fit with 15 ml & 50ml tubes

Flexibility

Stackable

Save time

Removal of large agregates: SmartStrainers

Straining has no impact on Cell viability

Recommended as SmartStrainers cause minimal changes to the cell concentration

Sample Clearing

Tools & Innovations

Single Cell Suspensions

Removal of Dead Cells

10X GENOMICS

TECHNICAL NOTE

Removal of Dead Cells from Single Cell Suspensions Improves Performance for 10x Genomics[®] Single Cell Applications

PBMC suspension #1 (Control):

PBMC suspension #2 (24 h at RT):

PBMC suspension #3 (Digitonin Low):

PBMC suspension #4 (Digitonin High):

Cells loaded immediately for partitioning after sample preparation

Cells left at room temperature (RT) in PBS for 24 h

Cells treated with 5 ng/ml Digitonin. Cell suspension resulted in < 5% viable cells and was mixed with >90% viable PBMCs at a 1:1 ratio

Cells treated with 5 ng/ml Digitonin. Cell suspension resulted in < 5% viable cells and was mixed with >90% viable PBMCs at a 5:1 ratio

	Control	24 h at RT	Digitonin Low	Digitonin High
Pre Dead Cell Removal	85%	50%	50%	20%
Post Dead Cell Removal	85%	86%	85%	82%

Table 1. Cell viability for each PBMC suspension assessed with Trypan Blue and the Countess II Automated Cell Counter after sample treatment and removal of dead cells with the Dead Cell Removal Protocol.

Fig.1. Barcode Rank Plot for 8 samples pre and post Dead Cell Removal treatment. Plotted is the distribution of barcode counts (x-axis) and the corresponding total UMI (Unique Molecular Identifier) counts (y-axis). Cell-containing partitions (barcodes on x-axis) are shown in green. Background partitions are shown in grey. Red circle indicates lack of steep drop-off. Yellow circle indicates one example of clear steep drop-off.

Removal of Dead Cells

Removal of Dead Cells

Debris Removal kit & Red Blood Lysis Solution

Example of debris removal after adult rat heart dissociation using the Debris Removal Solution

Full acceleration &

Full brake

Save time

Cell Separation Tools & Innovation

Single Cell Suspensions

tSNE1

TIL subpopulations in 4T1 tumor – bulk tumor

TIL subpopulations in 4T1 tumor – enriched CD45+ cells

Impact of cell separation on single cells analysis

10x Genomics® Sample Preparation Demonstrated Protocol

Enrichment of CD3+ T Cells from Dissociated Tissues for Single Cell RNA Sequencing and Immune Repertoire Profiling

TSNE of Melanoma samples

Minimal labelling

Gentle for cells

Minimal labelling

Gentle for cells

Fast Enrichment

Save time for downstream analysis

Starting Materials

Single cell suspension PBMC, dissociated tissues

MicroBeads & Isolation Kits

Blood products Whole blood, Buffy coat, Apheresis products

StraightFrom Technology

Minimal labelling

Gentle for cells

Fast Enrichment

Save time for downstream analysis

Automation & Highthroughput

Reproducibility & time saving

Upscale your cell separation

			MultiMACS" X Vision Contraction	
Manual	Automated	High throughput	Automated high throughput	
Minimal labelling	Fast Enrich	ment	Automation possible	
Gentle for cells	Save time downstream a	e for analysis	Reproducibility	

MACSQuant Tyto

MACSQuant Tyto

Low pressure

No decompression

DOH- EBEE AT 7

Enables re-sorting of functionnal cells

Full Cell Viability & Functionnality

Additionnal Technologies to improve your SCG Results Tools & Innovations

Single Cell Suspensions

tSNE1

MACSQuant Analyzers : Absolute counting & co Miltenyi Biotec 1. 11. 5 11111111 •MACS16 **High precision** Chill racks & Autolabelling syringe gentle mixing **Ideal for Viability Absolute counting Viability Accuracy** check

Viability Check by Flow Cytometry

Viability Check by Flow Cytometry

New

Viobility[™] Fixable dyes

Amine groups binding

Cells stained with Viobility Dye

New

Viobility [™] Fixable dye	es	Viobility⊺	<mark>Blue</mark> L ™ 488/5	- <mark>aser</mark> 20 Fixabl	e Dye	
		Equivalent fluorochromes FITC / VioBright FITC	Capacity 100 tests	Reference 130-109-814	Price 60 €	
		/Alexa488	500 tests	130-110-206	240 €	
		V	/iolet	Laser		
		Viobility	[™] 405/4	52 Fixabl	e Dye	
		Equivalent fluorochromes	Capacity	Reference	Price	
		VioBlue / Pacific Blue / V450 / BV421	100 tests 500 tests	130-109-816 130-110-205	60 € 240 €	-
Non toxic for cells	No passive diffusion	Viobility Equivalent fluorochromes VioGreen / V500 /		High	SI	
Viability	Viability Accurancy	BV510	• Better discrimination			

Studies from Tumors

Tools & Innovations

Single Cell Suspensions

Cell preparation from tumor tissue - workflow

Study design

Syngeneic Mouse Tumor Model

Tumor cells implanted in mice of the same inbred strain

Experimental setup

Study goals

• Performance

Reproducibility

• Tumor heterogenity

Performance

Increase in Cleanliness and Complexity

Cell Ranger[™] Software Pipeline

A = Post Filtration | B = Post RBC Lysis | C, (D) = Post Dead Cell Removal(s)

20,000 reads per cell (low seq. depth)

Substantial Increase in Cell Recovery

A = Post Filtration | B = Post RBC Lysis | C, (D) = Post Dead Cell Removal(s)

Reproducibility

Breast tumors – reproducible results

Plus RBC and Dead Cell Removal

Loupe Cell Browser[™] Software

Colon tumors – reproducible results

Plus RBC and Dead Cell Removal

Melanoma – additional clean-ups increase the reproducibility of results

poor reproducibility

Plus RBC and Dead Cell Removal

Tumor heterogenity

Tumor heterogenity – analysis of cell types

Breast Tumor: 6335 Cells

Tumor heterogenity – analysis of cell types

Performence Parameter	Measurement	Filtered Only	With additionnal clean-ups: RBC Lysis & DCR
Library Complexity	Median genes per cell	2112	2967
Library Cleanliness	Fraction of reads in cells	79%	92%
Cell Recovered Melanoma & Colon	Estimated number of cells (Target=5000)	984	3691
Cell Recovered Breast	Estimated number of cells (Target=2000)	427	1264
Reproducibility	Loupe Cell Browser	2/3	3/3
Heterogeneity	Loupe Cell Browser	3/3	3/3

- Samples yielded good performance before(!) and after additional clean-up steps
- Cell Recovery is significantly improved with additional clean-up steps
- Optimization may be required to maximize % of non-tumor cells

tSNE1

