EMEA 10x Genomics User Day I2MC, Toulouse

09h00 Registrations
9h30-9h45 Présentation Toulouse Single Cell Core Facilities : Carine Valle / Fred Martins / Emeline Lhuillier
10h00 Portfolio 10x Genomics (Christophe Fleury)
10h20 Immudex - *dCODE Dextramer®-Unravel Specificity of T-cell immunity*10h40 Chervin Hassel - IHAP: Description of lactacting mammary gland immune cells using single-cell RNA-Seq approach.
11h10 Sample prep 10x Genomics: Tips and tricks (Bashir Sadet)
11h40 Aurélie Quilien - CBD : Understanding the development of Left/Right asymmetry in the zebrafish brain by using scRNA-seq.
12h10 Miltenyi : sample prep
12h30 Lunch break

14h00 Jean-Jacques Fournié - CRCT: New Open source tools for single cell multiomics analyses with your laptop computers. **14h30** Biolegend

14h50 Meryem Aloulou – CPTP : scRNA-seq unveils how Foxp3+ Treg programs dendritic cells to promote B cell response. **15h20** Visium Spatial Gene Expression: technology and developments

15h50 Céline Mazzotti / Romain Lannes IUCT : Single-cell : Intégration de données moléculaires des populations plasmocytaires de Myélome Multiple.

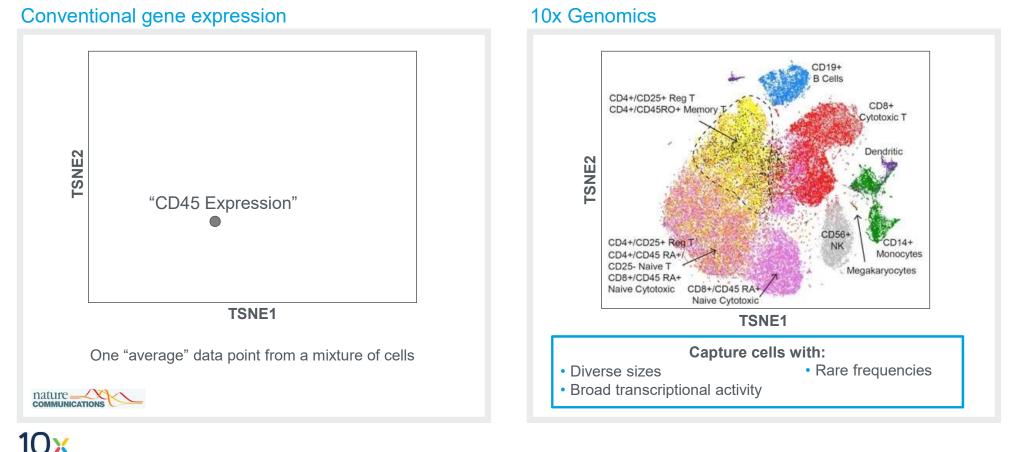
16h20 Conclusions et collations/networking

Biology at True Resolution

From single cell transcriptomics to multi-omics to spatial transcriptomics

Christophe Fleury, PhD Science & Technology Advisor

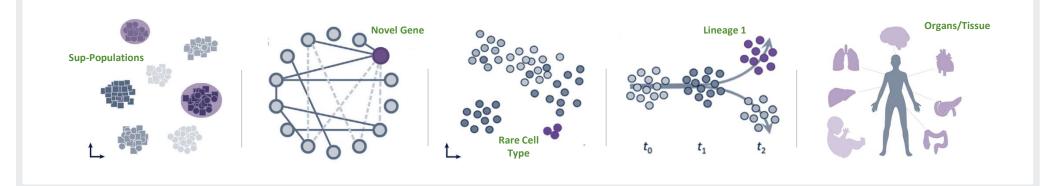
User day Toulouse - 10/03/2020



"Imagine you were a biologist and didn't have a microscope — and then I handed you one for the first time. That's how profound single-cell sequencing is. It lets us see what we haven't seen before; it gives us a new instruction manual for life."

Dr. Sam Behjati Pediatric oncologist and single-cell researcher WELLCOME SANGER INSTITUTE in Britain

Single Cell Gene Expression – Unbiased and scalable



Zheng et. al Nature Communications volume8, Article number: 14049 (2017)

GENOMICS

Scientific questions to answer

- Characterize & identify heterogeneous cell populations
- Discover new cell markers & regulatory pathways
- Uncover novel cell types, cell states & rare cell types
- Reconstruct developmental hierarchies and reveal lineage relationships
- Profiling healthy and diseased tissue and organs

10X GENOMICS

How does single cell sequencing make a difference?

DEVELOPMENT

Identification of a regenerationorganizing cell in the *Xenopus* tail

C. Aztekin^{1,2+}, T. W. Hiscock^{1,3+}, J. C. Marioni^{3,4,5}, J. B. Gurdon^{1,2}, B. D. Simons^{1,6,7}+, J. Jullien^{1,2}+

ARTICLE

https://doi.org/10.1038/s41586-019-1195-2

Single-cell transcriptomic analysis of Alzheimer's disease

Hansruedi Mathys^{1,2,3}, Jose Davila–Velderrain^{3,4,3}, Zhuyu Peng^{1,2}, Fan Gao^{1,2}, Shahin Mohammadi^{3,4}, Jennie Z. Young^{1,2}, Madityi Menon^{4,3,5}, Liang He^{3,4}, Fatema Abdurrob^{1,2}, Xuergiao Jiang^{2,4}, Anthony J. Martorell^{1,2}, Richard M. Ransohoff, Brian P. Haffer^{2,4,5}, David A. Bennett⁴, Manoli Kell^{1,4,4,4,4}, Li Heil Ra^{1,2,4,5,4},

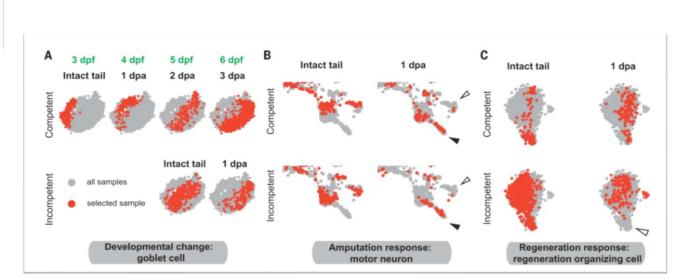
ARTICLE

Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy

OPEN

67-019-13880-1

Alyssa Sheih^{1,8}, Valentin Voilletle^{2,8}, Laila-Aicha Hanafi^{1,8}, Hannah A. DeBerg³, Masanao Yajima⁴, Reed Hawkins¹, Vivian Gersuke⁹, ³, Stanley R. Riddell^{1,5,6}, David G. Maloney^{1,5,6}, Martin E. Wohlfahrt⁰, Dnyanada Pande¹, Mark R. Enstrom⁹, ¹, Hans-Peter Kiem⁹, ^{15,7}, Jennifer E. Adair<u>0</u>, ^{15,6}, Raphaël Gottardog^{-2,5,6}, Peter S. Linsley³ & Cameron J. Turtle^{1,5,6}


How does single cell sequencing make a difference?

DEVELOPMENT

Identification of a regenerationorganizing cell in the *Xenopus* tail

C. Aztekin^{1,2}, T. W. Hiscock^{1,3}, J. C. Marioni^{3,4,5}, J. B. Gurdon^{1,2}, B. D. Simons^{1,6,7}, J. Jullien^{1,2}

- What are these cells? What genes are involved?
- Discovery of cell progenitors: Regeneration organizing cells (ROC)

10X GENOMICS

How does single cell sequencing make a difference?

Neuroscience

ARTICLE


Single-cell transcriptomic analysis of Alzheimer's disease

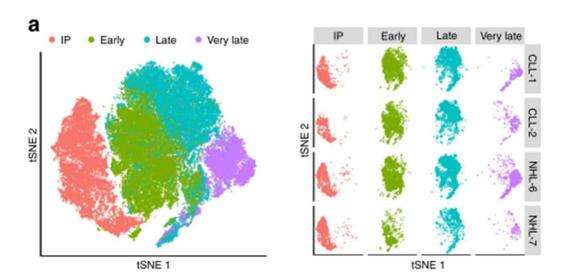
https://doi.org/10.1038/s41586-019-1195-2

Hansruedi Mathys^{1,2,9}, Jose Davila-Velderrain^{3,4,9}, Zhuyu Peng^{1,2}, Fan Gao^{1,2}, Shahin Mohammadi^{3,4}, Jennie Z. Young^{1,2}, Madhyi Menon^{3,5,8}, Liang He^{3,4}, Fatema Abdurrob^{1,2}, Xueqiao Jiang^{1,2}, Anthony J. Martorell^{1,2}, Richard M. Ransohoff, Brian P. Hafer-^{3,6}, David A. Bennet⁴, Manolis Kellis^{1,4,3,6}, L. Huel Tsal^{1,2,4,10}

- What are the genes involved in AD?
- Bulk analysis showed 12 genes differentially expressed
- Single cell analysis revealed over 50 genes differentially expressed
- Genes are cell specific

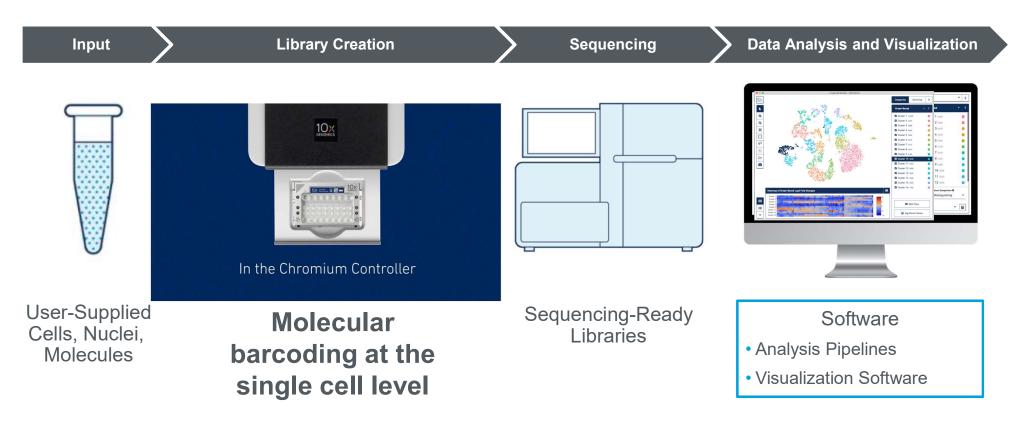
GENOMICS

How does single cell sequencing make a difference? Oncology

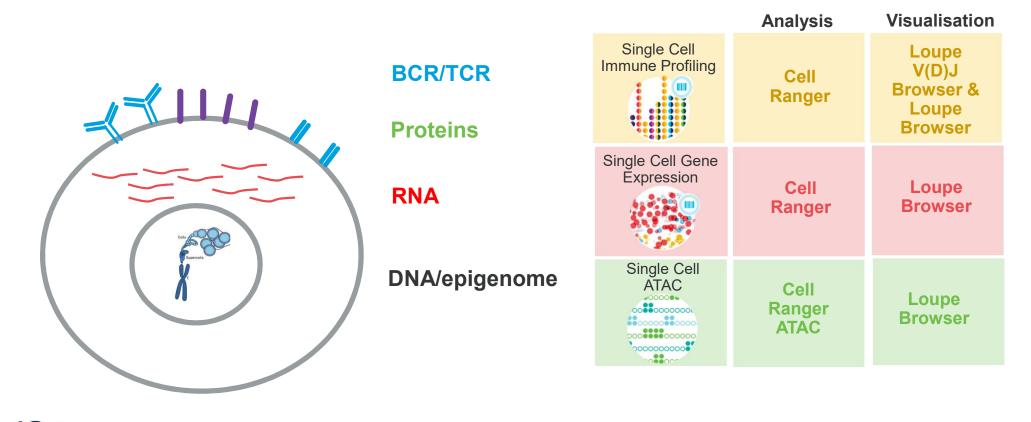

ARTICLE

Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy

OPEN


Alyssa Sheih¹⁸, Valentin Voillette^{2,8}, Laïla-Aicha Hanafi¹⁸, Hannah A. DeBerg³, Masanao Yajima⁴, Reed Hawkins¹, Vivian Gersuke³, Stanley R. Riddell^{15,6}, David G. Maloney^{15,6}, Martin E. Wohlfahrt^e1, Dnyanada Pande¹, Mark R. Enstrom⁶, Hans-Peter Kieme^{3, 15,7}, Jennifer E. Adaire^{3, 15,6}, Raphaël Gottardo^{2, 25,6}, Peter S. Linsley³ & Cameron J. Turtle^{1,5,6}

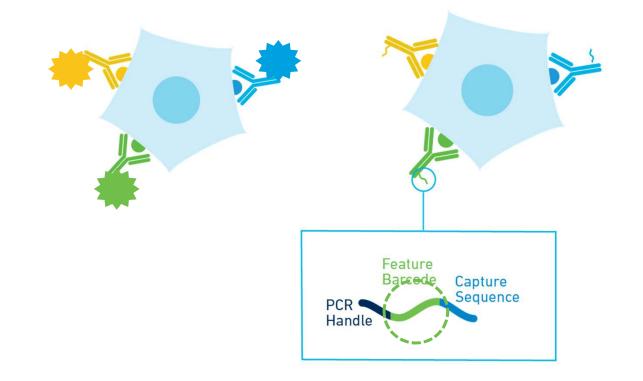
- How do CAR-T cells behave once reinjected?
- · Monitored each reinfused clone
- Transcriptional profiles of clones diverge
- · Variability between patients



10x Genomics Chromium workflow

10X GENOMICS

Multiple layers of information at the single cell level


Single Cell Feature Barcoding Technology

Capture gene expression & additional cellular phenotypes in the same cell

OSTIC PROCEDURES. 12

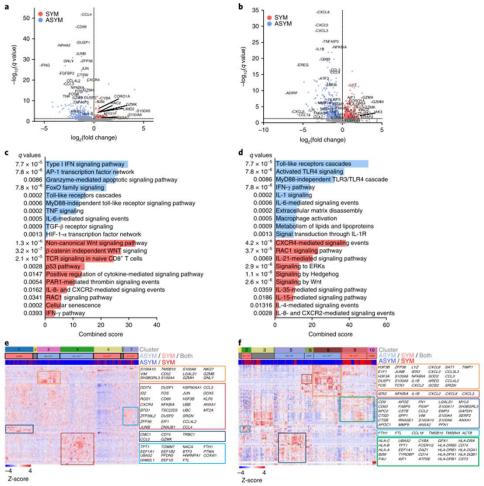
Feature Barcoding Technology: Cell Surface Protein

- A feature barcode is a short nucleic acid sequence, e.g.:
 - AAGGCAGACGGTGCA
 - CGTCCTAGGACATAT
 - ACGAATCGGATACTA
 - Etc,...
- Allow to identify and quantify cell surface protein and/or the feature of interest

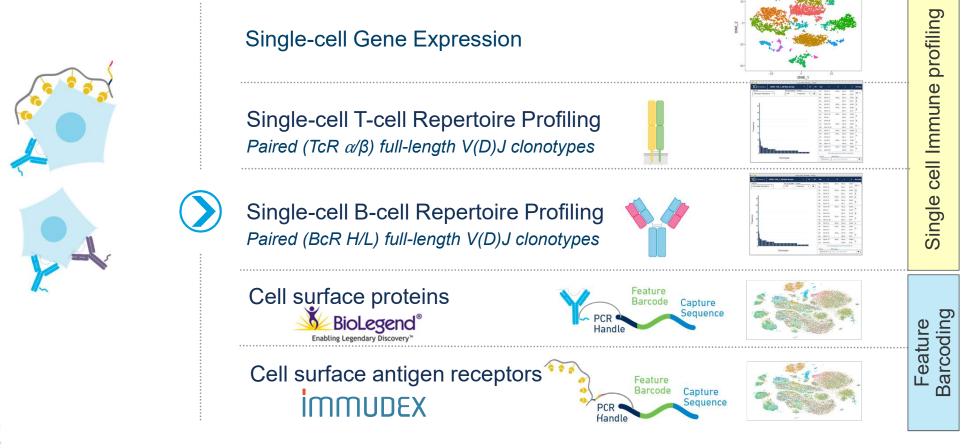
Introduction to Feature Barcode Technology

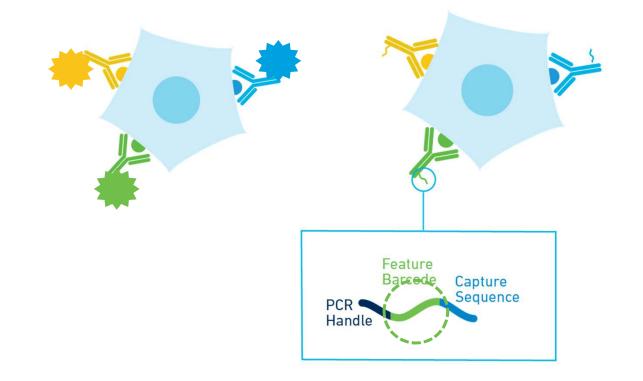
Simultaneously measure interactions and phenotypic information

GENOMICS


Richer cell phenotypes with scRNA-seq

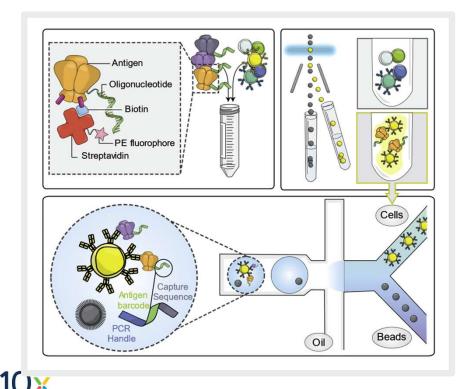
Fernandez et al., Nature Medicine, 2019

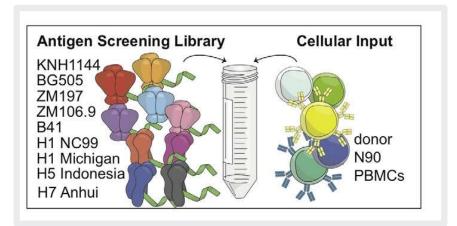

- Single cell gene expression of immune cells (symptomatic Vs asymptomatic patients)
- Confirmed findings by CyTOF. Reconciled CyTOF data and scRNA-seq data by using CITE-seq (21 Ab)
- Discovered more diverse heterogeneity of the lesion macrophages than showed by CyTOF and previously thought
- Refined characterization of T cell clusters by accessing vast number of marker profiles
- Incidental finding of reasons explaining the failure
 of CANTOS clinical trial


doi:10.1038/s41591-019-0590-4

One Sample, several layers of Information

Feature Barcoding Technology: Cell Surface Protein


- A feature barcode is a short nucleic acid sequence, e.g.:
 - AAGGCAGACGGTGCA
 - CGTCCTAGGACATAT
 - ACGAATCGGATACTA
 - Etc,...
- Allow to identify and quantify cell surface protein and/or the feature of interest



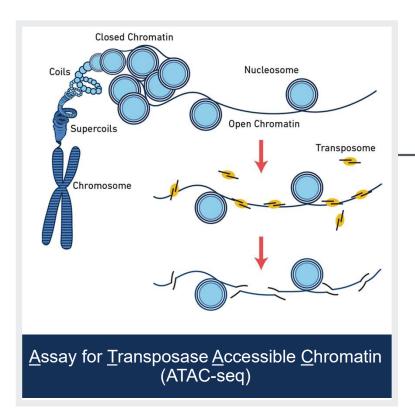
LIBRA-seq enables high-throughput mapping of B cell receptor sequence to antigen specificity at the single-cell level

Setliff et al., Cell, 2019

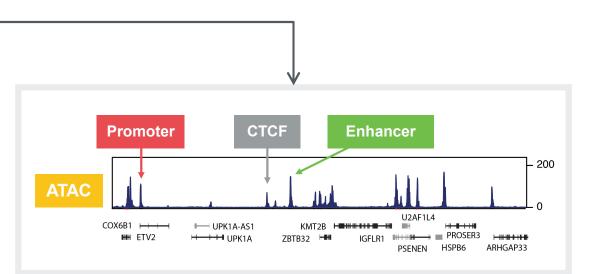
GENOMICS

Cell

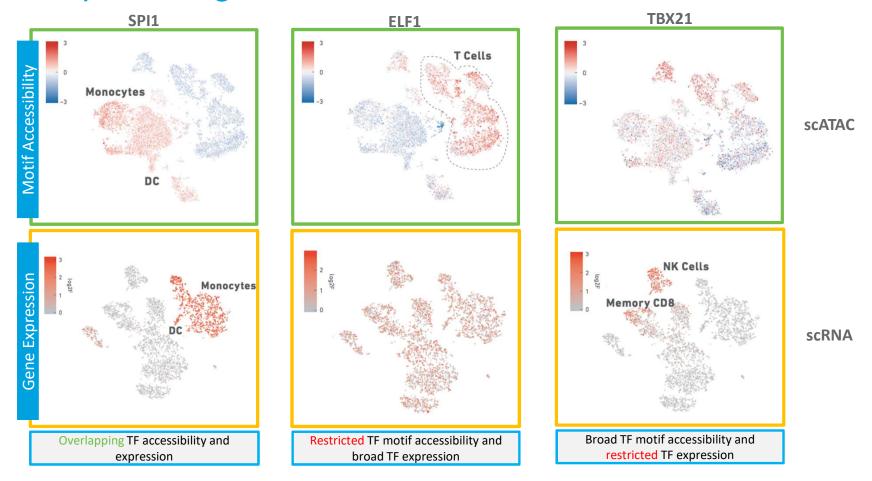
High-Throughput Mapping of B Cell Receptor Sequences to Antigen Specificity


Ian Setliff,^{1,2,16} Andrea R. Shiakolas,^{1,3,16} Kelsey A. Pilewski,^{1,3} Amyn A. Murji,^{1,3} Rutendo E. Mapengo,⁴ Katarzyna Janowska,⁵ Simone Richardson,^{4,11} Charissa Oosthuysen,^{4,11} Nagarajan Raju,^{1,3} Larance Ronsard,⁷ Masaru Kanekiyo,⁸ Juliana S. Qin,¹ Kevin J. Kramer,^{1,3} Allison R. Greenplate,¹ Wyatt J. McDonnell,^{3,9,17} Barney S. Graham,⁸ Mark Connors,¹⁰ Daniel Lingwood,⁷ Priyamvada Acharya,^{5,6} Lynn Morris,^{4,11,12} and Ivelin S. Georgiev^{1,3,13,14,15,18,*}

Profiling the epigenome


Sn ATAC-seq

Resolve multiple features using Chromatin Accessibility



Open chromatin represented as "peaks"

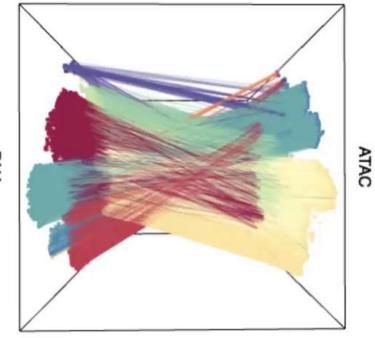
© 10X GENOMICS, INC. 2020 | FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. 20

10×

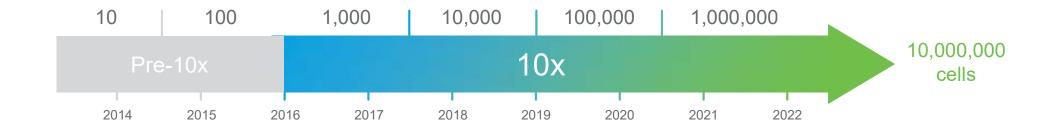
Single Cell ATAC + RNA Expression Reveal Complex Patterns of Transcription Regulation

© 10X GENOMICS, INC. 2020 | FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.

21



Chromium Single Cell ATAC + Gene Expression

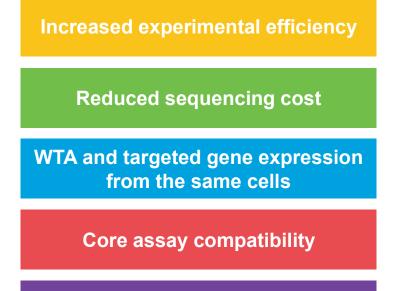


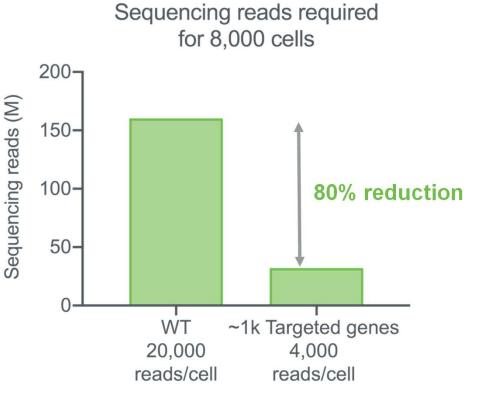
High Concordance Between the Two Read-Outs

naive/memory B cells	cell annotatio
IgM+IgD+ memory B cells	B cells
CD14 monocytes	monocytes
CD16 monocytes	
myeloid DC plasmacytoid DC plasma B cells granulocytes	
CD4 memory T cells	naive/memory T cell
naive T cells	intrody i con
CD8 effector T cells	
	NK/CD8+ T cell

10x Will Enable Routine Million Cells and Beyond

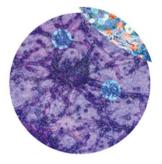
Cells per routine experiment

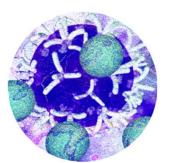

Targeted Gene Expression



From Discovery to Focused Transcriptomics

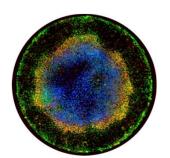
Targeted product built for 10x assays


Content and customization



Ready-to-use 10x Genomics Content Offering

Fixed gene panels with comprehensive content

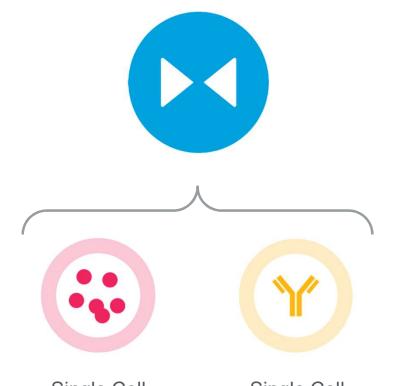


Human Pan-Cancer ~1250 genes

10× H

Human Immunology ~1050 genes

Human Gene Signature ~1140 genes



Human Neuroscience ~1150 genes

- Tissue specific marker genes
- Major signaling pathways
- Common biomarkers
- Disease targets for drug discovery

Cell Multiplexing

GENOMICS

- Flexible Design
- Higher Throughput
- Species/Cell Type Agnostic
- Nuclei Compatible
- Fully Supported Software

Single Cell Gene Expression Single Cell Immune Profiling

Cell Multiplexing - Customer Developed Methods

10X

Stoeckius et al. Genome Biology (2018) 19:224 https://doi.org/10.1186/s13059-018-1603-1 Genome Biology	nature
METHOD Open Access Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics Image: ConstMark Marlon Stoeckius ¹¹ , Shiwei Zheng ²¹ , Brian Houck-Loomis ¹ , Stephanie Hao ¹ , Bertrand Z. Yeung ³ , William M. Mauck III ² , Peter Smibert ^{1*} and Rahul Satija ^{2*}	ARTICLE Mttps://dol.arg/10.1038/s41467-019-10756-2 PEN Nuclei multiplexing with barcoded antibodies for single-nucleus genomics Jellert T. Gaublomme ^{1,6,9} , Bo Li@ ^{17,9} , Cristin McCabe ¹ , Abigail Knecht ¹ , Yiming Yang ⁰ , Eugene Drokhlyansky ¹ , Nicholas Van Wittenberghe ¹ , Julia Waldman ¹ , Danielle Dionne ⁰ , Lan Nguyen ¹ , Philip L. De Jager ⁰ , Bertrand Yeung ⁴ , Xinfang Zhao ⁴ , Naomi Habib ^{1,8} , Orit Rozenblatt-Rosen ¹ & Aviv Regev ^{1,5}
nature methods ARTICLES https://doi.org/10.1038/s41592-019-0433-8	Guo et al. Genome Biology (2019) 20:90 https://doi.org/10.1186/s13059-019-1699-y
MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices Christopher S. McGinnis ^{1,0} , David M. Patterson ^{1,0} , Juliane Winkler ² , Daniel N. Conrad ¹ , Marco Y. Hein ^{3,4} , Vasudha Srivastava ¹ , Jennifer L. Hu ¹ , Lyndsay M. Murrow ¹ , Jonathan S. Weissman ^{3,4} , Zena Werb ^{2,5} , Eric D. Chow ^{6,7*} and Zev J. Gartner ^{5,5,8,9*}	METHOD Open Access CellTag Indexing: genetic barcode-based sample multiplexing for single-cell genomics Image: Chuner Guo 123, Wenjun Kong 123, Kenji Kamimoto 123, Guillermo C. Rivera-Gonzalez 123, Xue Yang 123, Yuhei Kirita 24 and Samantha A. Morris 123* (a)

Cell Multiplexing, Built The 10x Way

Enabling routine profiling of hundreds of thousands to millions of cells

Lipid based

Species agnostic

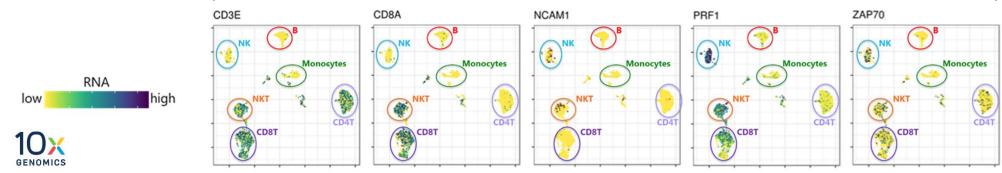
Nuclei + Cells

10x product compatible

More cells 20k per channel | 160k per chip More Samples 12 per channel | 96 per chip

Targeted Gene Expression

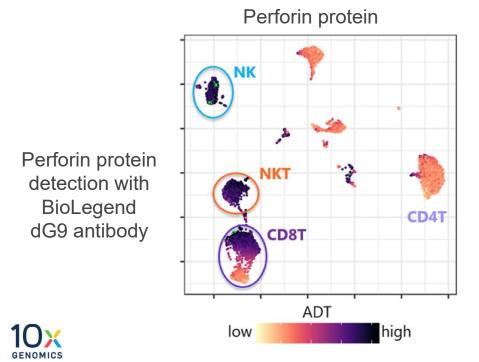
Cell Multiplexing

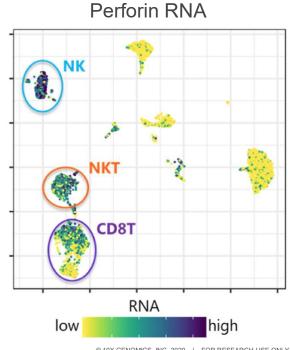

Intracellular Protein Detection

31

10X GENOMICS

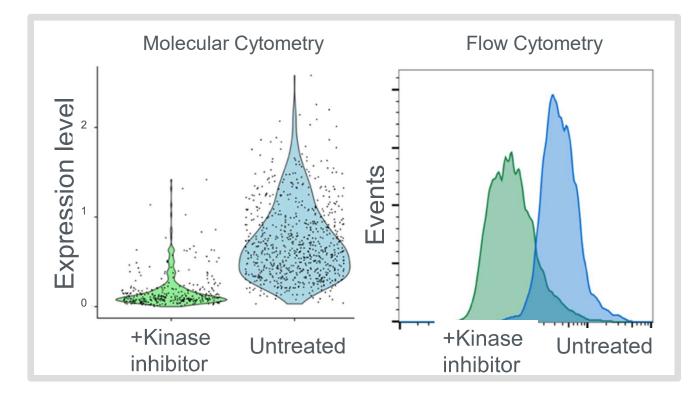
Detecting Intracellular Protein Expression BioLegend® 10x Genomics Workflow + BioLegend Fixation and Antibodies Cell Surface Protein Intracellular Protein ADT_B0040|hs_ZAP70 ADT_B0034|hs_CD3 ADT_B0046|hs_CD8 ADT_B0047|hs_CD56 (NCAM) ADT_B0044|dG9 Monocytes Monocytes Monocytes Monocytes Monocytes **(P** ő , 🤏 ADT low high CD41 CD8T CD8T CD8T CD8T CD8T RŅA CD3E CD8A NCAM1 PRF1 ZAP70




Detecting Intracellular Protein Expression

10x Genomics Workflow + BioLegend Fixation and Antibodies

Simultaneous Detection of Perforin Protein & RNA in PBMCs (TotalSeq-B)



Detecting Changes In Intracellular Protein Expression

Cell Signaling

10x Genomics Workflow + CST Fixation and Antibodies

Jurkat cells treated with kinase inhibitor (↓ phosphorylation) Detection with CST Phospho 4E-BP1 antibody

Thank You! Questions?

Christophe Fleury

Science and technology advisor

10x Genomics Team

Jamal FAKIR Sales Executive

Bashir SADET Field Applications Scientist

GENOMICS

10x Genomics Scientific Symposium

Copenhagen, Borsen Stock Exchange | 2-3 June https://10xgenomicsugm-copenhagen.eventbrite.com

- Day 1:
 - Presentations by industry leaders
 - Sample preparation workshop
 - Enjoy an evening social event
 - Book 1:1 meetings with our 10x-perts
 - · Visit our troubleshooting stations for expert advice
 - Four juniors researchers (PhD students/early PostDocs) will win a 500 euro travel award to cover their attendance!
 - Enter our Scientific Challenge to win free kits for your projects!
- Day 2 workshops:
 - Getting Started with Chromium Single Cell Gene Expression Data Analysis (by abstract submission)
 - Getting Started with Visium Spatial Gene Expression Data Analysis (by abstract submission)
 - Bioinformatics for Single Cell and Spatial Genomics (bioinformaticians)

