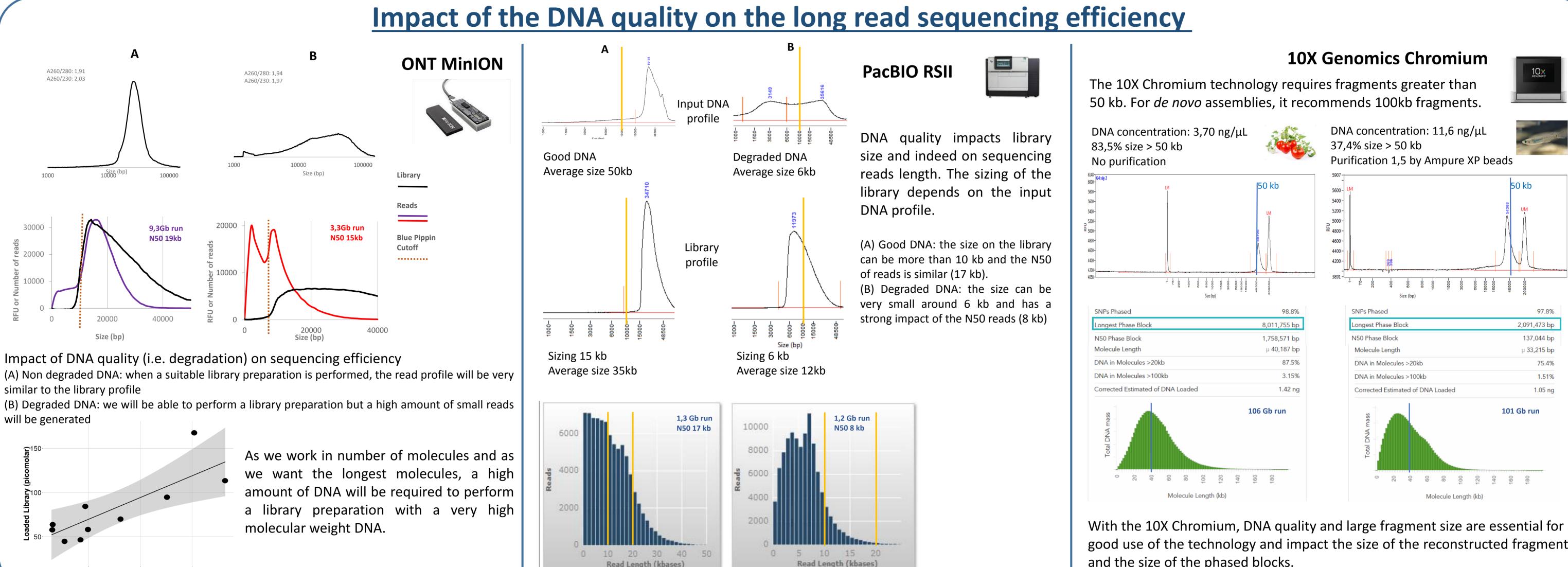
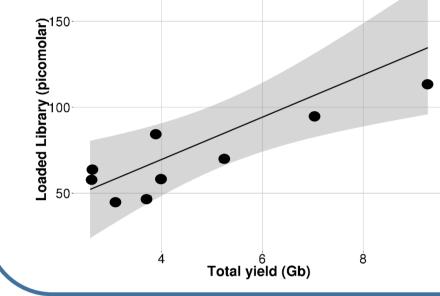


Anais POIRAUDEAU^{1*}, Maxime MANNO^{1*}, Céline VANDECASTEELE¹, Alain ROULET¹, Catherine ZANCHETTA¹, Pauline HEUILLARD¹, Fabrice ROUX², Baptiste MAYJONADE², Jérôme GOUZY², Yann GUIGUEN³, Christophe KLOPP⁴, Pierre FRASSE⁵, Mohamed ZOUINE⁵, Cécile DONNADIEU¹, Olivier BOUCHEZ¹, Gérald SALIN¹ and Claire KUCHLY¹


> 1 INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France 2 LIPM, UMR 441 INRA, 31326, Castanet-Tolosan, France 3 INRA, UR 1037 LPGP Laboratoire de Physiologie et Génomique des Poissons, 35000, Rennes, France. 4 MIAT, UR875 INRA, Plateforme bioinformatique, 31326, Castanet-Tolosan, France 5 ENSAT, UMR 990 INRA/INPT-ENSAT, Laboratoire Génomique et Biotechnologie des Fruits, 31326, Castanet-Tolosan, France


[•] Equal contribution to this work

Thanks to its experience on short reads sequencing using the Illumina technologies, the GeT-PlaGe core facility began to evaluate and use long read technologies since the beginning of 2015: Pacific BioSciences RSII, Oxford Nanopore Technology MinION and 10XGenomics Chromium. Genomic issues such as complex genome assembly, structural variant discovery or phasing can be addressed by those long read technologies.

As DNA quality is the most important requirement to obtain an efficient sequencing, sample requirements for each technology, and quality controls performed on GeT-PlaGe will be detailed. For all the technology presented, DNA sample needs high quality and purity. For ONT MinION and 10XGenomics Chromium, the reads length have theoritically no limits compare to PacBio RSII (max around 50 kb) but the input DNA size is the key for all of them. The amont of DNA required for sequencing can be huge and challenging to obtain. The DNA quality is the cornerstone of a good bioinformatic analysis particulary for assemblies.

We are presenting current projects concerning de novo assembly results obtained using multiple Long Read technologies, for several genomes (bacteria, fungus, tomato and fish).

With the 10X Chromium, DNA quality and large fragment size are essential for a good use of the technology and impact the size of the reconstructed fragments and the size of the phased blocks.

ONT MinION vs PacBio RSII: let's fight !

Concerning the problematic of de novo assembly using long reads, PacBio technologies are challenged by ONT's. Can we compare them on the same input DNA (Bacteria and Fungus)?

Bacterial raw data accuracy

ONT raw data accuracy seems to be better than PacBio's, but errors are not random (long homopolymer bias). It might be an obstacle to obtain a good assembly.

Raw data sets	Accuracy ¹
HiSeq ²	99.7 %
RSII ³	81.3 %
MinION ⁴	86.3 %

Read Length (kbases)

PacBio RSII, 10X Chromium: a love story ?

These two approaches are long reads technologies but unlike PacBio RSII, 10X Genomics use synthetic reads. For assembly purposes, are PacBio RSII and 10X Chromium results similar or is there a benefit to use them together?

The analysis have been performed on fish and tomato genomes. For PacBio *de novo* assemblies, we assessed 5 long reads assembly softwares: Miniasm^{v0.2}, Falcon^{v0.4.2}, Canu^{v1.4} and SmartDeNovo^{v1.0.0}. We obtained the best results with Canu and SmartDeNovo, so only those will be presented here.

13603907

19

Can we use the ONT technology alone or combined with Illumina data to get a genome with the equivalent quality than PacBio ?

Bacterial genome assembly (5 Mb)

Assembly sets	Input Cov ¹	nbrContigs	totNuc
MinION-CANU ²	1156	1	5045252
MinION-CANU-PILON	71 ³	1	5122723
RSII-HGAP3 ⁴	81	1	5078836

¹ Raw data coverage (X)

² ONT raw data (1D protocol), qscore > Q10 and size > 3 kb

³ Illumina data coverage

⁴ PacBio raw data, polymerase qscore > 0.80 and subread size > 3 kb

The ONT read length allow to get just one contig for bacteria like the other sets. ONT Assembly has been performed with all raw data but we didn't assess with less coverage.

From basecalling to assembly, the PacBio RSII pipeline is more efficient than the ONT pipeline which is frequently updated.

Bacterial assembly completness¹ metrics

Assembly sets	Complete genes	Fragmented genes	Missing genes	Total genes groups searched
MinION-CANU	25 (16.9%)	53 (35.8%)	70 (47.3%)	148
MinION-CANU-PILON	141 (95.3%)	0	7 (4.7%)	148
RSII-HGAP3	141 (95.3%)	0	7 (4.7%)	148

¹ Completness computed with BUSCO V2 on the bacteria_odb9

The best BUSCO results are given by PacBio and ONT+Illumina data: 95.3% of complete genes. While ONT data allow us to generate only one contig, most of the genes are missing or fragmented.

With these versions of MinKNOW and Albacore, ONT data have to be combined with Illumina's to get the same results as PacBio RSII.

Fungus genome assembly (50Mb)*

Pipeline softwares			-	•	<i>,</i> , , , , , , , , , , , , , , , , , ,		
SEQUENCING – MinKNOW 1.6.	Complete genes	Total size of contige	N50 contigs	a Nbr contigs	Quantity of raw dat	N50 raw data C	Assembly sets ¹
BASECALLING - Albacore 1.1.	92%	84 Mb	166 kb	915	2.9 Gb	9.7Kb	RSII

¹ Accuracy base on alignment to the PacBio genome reference ² Illumina MiSeq total raw data ³ PacBio RSII total raw data ⁴ ONT MinION total raw data

Assembly Pipeline for ONT data

SEQUENCING – MinKNOW 1.3.2 → Output: Raw Data (.fast5) Quantity: 226 Go Duration: 2 days	ASSEMBLY - Canu 1.3 → Output: (.fasta/q) Quantity: 0,5 Go Duration: 3 hours Ressources: 8 threads (1G mem/thread)
BASECALLING - Albacore 1.0.1 → Output: Raw Data + Calling (.fast5) Quantity: 1.3 To Duration: 3 days Ressources: 24 threads (2G mem/thread)	POLISHING - PILON 1.21 → Output: (.fasta/q) Quantity: 0,5 Go Duration: 0.5 hour Ressources: 8 threads (10G mem/thread)

Genome assemblies metrics

Fish genome assembly	Cov (X)	#	L50 contig	N50 contig
10x Supernova ¹	104x	43476	3641	51157
PacBio SmartDeNovo	71x	701	55	4137750
PacBio Canu	71x	4062	126	1341974
10x + SmartDeNovo ²		534	44	5470783
Tomato genome Assembly	Cov (X)	#	L50 contig	N50 contig
10x Supernova ¹	116x	24579	1995	104298
PacBio SmartDeNovo	81x	857	112	2062400
PacBio Canu	81x	508	47	4973822

284

¹The assemblies are realized by Supernova (v.1.1.2) a 10xGenomics software. ² To combine PacBio RS II and Chromium 10x assemblies, we used ARCS software.

Genome assembly completness¹ metrics

Fish Assembly ²	Complete	Fragmented	Missing	Total groups searched
10x Supernova	2131 (82,4%)	328 (12,7%)	127 (4,9%)	2586
PacBio SmartDeNovo	2277 (88,1%)	224 (8,7%)	85 (3,2%)	2586
ARCS SmartDeNovo	2278 (88,1%)	223 (8,6%)	85 (3 <i>,</i> 2%)	2586

		Missing	Total groups searched
1303 (90,5%)	44 (3,1%)	93 (6,5%)	1440
1353 (94,0%)	25 (1,7%)	62 (4,3%)	1440
1357 (94,2%)	23 (1,6%)	60 (4,2%)	1440
ith BUSCO V2			
odb9			
a_odb9			
	1353 (94,0%)	1353 (94,0%) 25 (1,7%) 1357 (94,2%) 23 (1,6%) ith BUSCO V2 23 odb9 23	1353 (94,0%) 25 (1,7%) 62 (4,3%) 1357 (94,2%) 23 (1,6%) 60 (4,2%) ith BUSCO V2 50db9

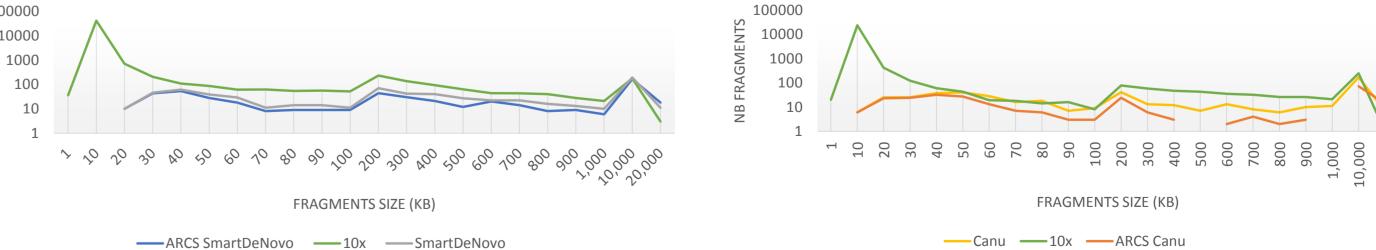
Fragment distribution

10x + Canu²

Fish Results Size distribution of fish's fragments 100000 10000 1000 100

According to assemblies metrics, the best results are obtained with the PacBio-SmartDeNovo for fish assembly and PacBio-Canu for tomato assembly. The use of ARCS software improves a lot the metrics.

Pipeline softwares


Canu + Quiver:	SmartDeNovo + Quiver:		
Ouration = 2 days + 15 days	Duration = 2 days + 9 days		
Threads = 8 (80G/Threads)	Threads =16 (80G/Threads)		
- 16 (40G/Threads)	+ 16 (40G/Threads)		
. 0x Supernova :	ARCS software:		
Duration = 5 days	Duration = 3 days		
Threads = 20 (300G/Threads)	Threads = 25 (30G/Threads)		

In the BUSCO analysis, the number of ancestral genes found is better for PacBio assemblies. The BUSCO score increases a little bit for the combination of 10X Chromium and PacBio assemblies: there are more genes found and less fragmented and missing genes.

Pipeline software

Duration = 4hThreads = 4 (60G/Threads)

Tomato Results Size distribution of tomato's fragments

MinION LR ²	19Kb	2.3 Gb	408	312 kb	68 Mb	89%
MinION LR+8 Kb ³	13.5Kb	3.8 Gb	525	160 kb	64 Mb	89%

ASSEMBLY - Canu 1.5 **POLISHING - PILON 1.21 COMPLETNESS - BUSCO v2**

¹ ONT and PacBio assembly with CANU 1.5 + PILON

² ONT 1D Long Reads protocol, sizing from 15 Kb to 90 Kb.

³ ONT 1D Long Reads protocol, sizing from 15 Kb to 90 Kb + ONT 1D protocol, sharing at 8 Kb, size > 8 Kb ⁴ Completness computed with BUSCOv2

With this more complex genome, it is difficult to conclude about the quality of the assembly. Regarding the PacBio data, we obtained a higher number of contigs, but also more complete genes. ONT data allow us to reduce the number of contigs despite of the integrity of genes. Moreover, most of the short ONT reads can be removed to improve the assembly metrics.

In case we have some Illumina data, ONT can be equivalent to PacBio concerning the *de novo* assembly. It strongly depends on the biological query and the genome complexity. Today, we have to combine ONT data with an other data set to exploit them, but that can change in a short term future.

* Acknowledgments: Thanks to Frédéric Breton *et all* and Tan Joon Sheong *et all* to allow us to present their results

In these two graphs, the fragment distribution of both samples are represented. The distributions follow the same trend except for 10X Chromium which are over represented at 10 kb. With ARCS software, we obtained less contigs but most of them are at 10.000 kb. Furthermore, there are more fragments at 20.000 kb in ARCS assemblies than the others. Indeed, the use of ARCS permits to obtain longer fragments than PacBio or 10X Chromium individual assemblies.

After the end of the analysis, we can not say there is a general « best assembler » for PacBio RSII because the result varies according to the samples. These differences can be explained by the genome complexity. The 10X Chromium Supernova results do not indicate better metrics than PacBio RSII. The combination of both improves significantly the PacBio quality assembly metrics.

