

µLAS High sensitivity DNA sorting and separation

Aurélien Bancaud

abancaud@laas.fr

INRA, 24/06/2016

Overview

• Technologies de processing de l'ADN: point de vue de l'ingénieur

Quelles opportunités pour la microfluidique

- Description du phénomène µLAS
- DNA concentration and separation by μLAS
- Industrial transfer to Picometrics Technologies
- Longs ADN et fractionnement en flux continu
- Conclusions

Identification without separation

Evolution of the format for separation

DNA separation: electrophoresis remains the main technology-> are there additional opportunities for microfluidics ?-> DNA sequencing tells us that some opportunities are still available

Sequencing by Pacific Biosciences (2003)

Nanofabrication & single molecule detection

LAAS CNRS

Technologies de processing de l'ADN: point de vue de l'ingénieur

Quelles opportunités pour la microfluidique

Description du phénomène µLAS

Overview

- DNA concentration and separation by μLAS
- Industrial transfer to Picometrics Technologies
- Longs ADN et fractionnement en flux continu
- Conclusions

Contribution du LAAS à l'analyse génétique

Revisiter technologies de séparation et concentration d'ADN

Selective enrichment

Principe de fonctionnement

Selective enrichment by size

Combined action of an hydrodynamic actuation and an electric field in a viscoelastic fluid.

Ranchon et al, Lab on a chip 2016

Patent: Bancaud, Ranchon, Leichlé, Teerapanich (08/2014) - FR 1457 544 (CNRS)

Mise en œuvre expérimentale

Time lapse of DNA ladder processing

Ranchon et al, Lab on a chip 2016

• Enrichment factors determination

Comparison vs. commercial devices sensitivity performances

- Sensitivity 1pg/mL vs. 10ng/mL for commercial devices
- ✓ Processing time < 5 min</p>

✓ Enrichment (up to x1000/min)

Performances: Mesure de taille à 3%

Electric & Hydrodynamic actuation

 \rightarrow Objective: maintain the molecule in the field of view

- $\lambda\text{-ADN}$ (48.5 kpb) in a microchannel of H = 2 μm
 - High intensity illumination -> DNA breaks occur in real time!
 - Addition of Poly-vynilpyrrolidone (PVP)

Electrophoretic Force

Transverse migration across the channel height

 $H = 12 \ \mu m$

- V0 = 1.6 mm.s¹ E = 10 V.cm⁻¹
- V0 = 3.2 mm.s¹ E = 15 V.cm⁻¹
 V0 = 6.3 mm.s¹ E = 24 V.cm⁻¹
- Visco-elastic force

kb-extend separation takes 3 hours according to NEB supplyer

- Technologies de processing de l'ADN: point de vue de l'ingénieur Quelles opportunités pour la microfluidique
- Description du phénomène µLAS

Overview

- DNA concentration and separation by μLAS
- Industrial transfer to Picometrics Technologies
- Longs ADN et fractionnement en flux continu
- Conclusions

CE Agilent + Picometrics LIF detector

DNA separation according to µLAS phenomenon

Microchip format

CNRS-LAAS results - courtesy of A. Bancaud

Capillary Electrophoresis format

Picometrics results

µLAS concentration – capillary format

Capillary junction – 100/20 μm

DNA concentration at capillary junction

µLAS concentration – capillary format

At t=0, there is DNA both in the large and the small capillary Video speed : 2X

Example of application : Cell-free circulating DNA

Getting a DNA profile of plasmatic free DNA is impossible using existing electrophoresis systems.

But it is an easy thing with the BIABooster :

Application au Cancer, IUCT

Healthy individuals

Metastatic patients

With the courtesy of G. Favre and A. Pradines, Toulouse Oncopole

Benchmark

- Technologies de processing de l'ADN: point de vue de l'ingénieur Quelles opportunités pour la microfluidique
- Description du phénomène µLAS

Overview

- DNA concentration and separation by μLAS
- Industrial transfer to Picometrics Technologies
- Longs ADN et fractionnement en flux continu
- Conclusions

PVP 30kDa; 2 bar (1,5 mm/s)- 25 V/cm; kb ladder extend; capillaire ID=25µm

kb ladder extend (bleu) et 98 kb (rouge); ID=25μm Projet avec CNRGV (BAC purifié)

kb ladder extend (bleu), 75 kb (rouge) et 150 kb (vert); ID=25 μm Projet avec CNRGV (BAC purifié)

Tri d'ADN sous flux continu

Microfabrication salle blanche

Focalisation hydrodynamique et tri

S. Méance, B. Chami,
 L. Boyer, C. Blatché,
 A. Bancaud
 MicroTAS 2016 SOUMIS

- µLAS: empilement des fonctions en ligne, séparation, enrichissement, tri et détection
- Transfert démontré pour l'ADN de faible MW
- Pistes de développement pour l'ADN de haut MW
- Fonction d'identification en cours d'évaluation brevet

Perspectives

- Consolider le tri d'ADN -> en lien avec les séquençages
- Travail sur le plasma direct sans purification
- Manipulation optimisée d'échantillons en petite quantité

Rémy Malbec Sébastien Méance Bayan Chami Charline Blatché Clean room facility LAAS-CNRS

Picometrics Technologies Nicolas Milon Audrey Boutonnet Frédéric Ginot Vincent Picot