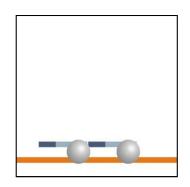

Les nouveaux outils pour réussir la qPCR

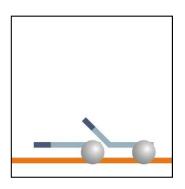
I2MC 13 octobre 2016

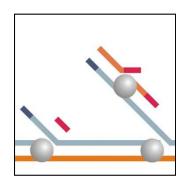
Hélène BAUBY Spécialiste BRC-uNGS


Single-cell genomics : Famille des produits REPLI-g et Single Cell


Technologie REPLI-g: utilisation de la MDA, pas de PCR

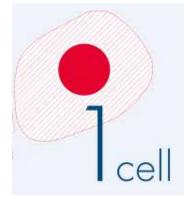
MDA: Multiple Displacement Amplification

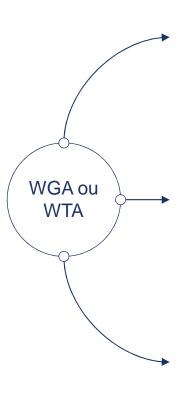




Hexamer random primers

Phi29 polymerase strand displacement (30°C)




Displaced strand becomes a template for replication

- Dénaturation douce la matrice ADN reste intacte
- Alignement des random primers amplification homogène sur tout le génome
- Enzyme Polymérase Phi29 haute-fidelité modifiée (SensiPhi)
 - Processivité accrue taille des fragments : 10-100 kb
 - Activité de relaecture environ 1000 fois plus efficace qu'une Taq classique
- Amplification par déplacements multiples
- (1) J.Liang et al., Journal of Genetics and Genomics 41 (2014) 513-528

Les applications de génomique Single-cell avec REPLI-g

Séquençage génome	
entier	

Identification de mutations Détermination du nombre de copie Séquençage *de novo*

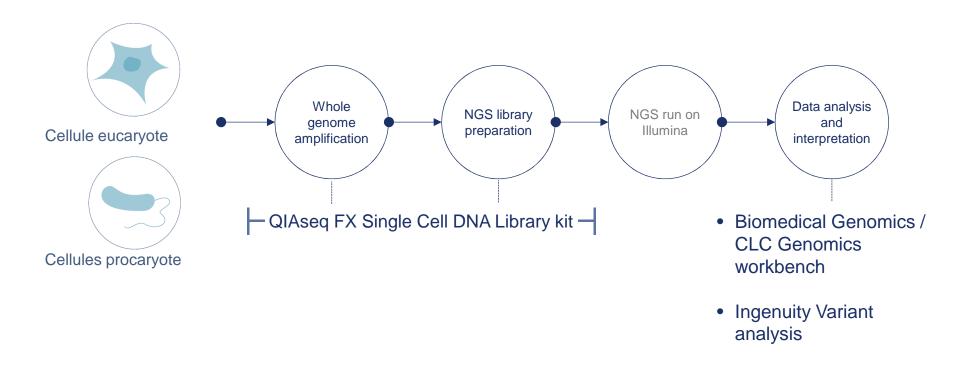
Séquençage ciblé

Panels de gènes pour identifier des variations dans un région spécifique

Analyse de l'expression des gènes par RNAseq

Abondance relative des ARNm

PCR


Abondance relative des ARNm

Single-cell whole genome sequencing (WGS)

Identitfication de variations dans le génome

Analyse du génome d'une cellule unique – technologie REPLI-g

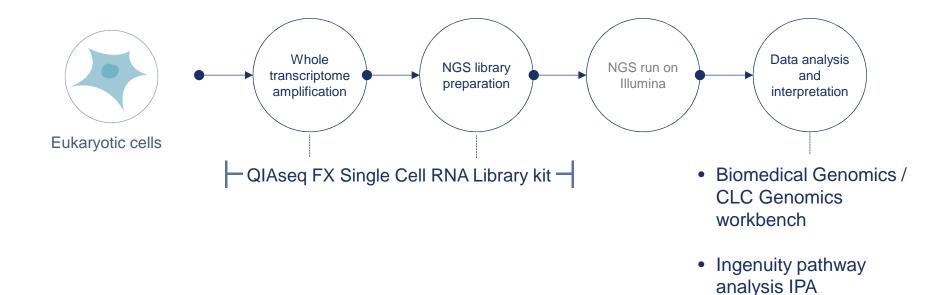
QIAseq FX Single Cell DNA Library kit

Pour du séquençage whole genome ou whole exome sur Illumina. Détection de mutations rare, cancer, neuroscience, maladies infectieuses, microbiome

- Workflow complet, de la cellule à la librairie, en un kit comprenant la fragmentation enzymatique
- Librairie sans PCR, pas de duplicat, biais GC réduit

Bénéfices

- Couverture complète du génome, génération de données plus fiables
- Amplification du génome HiFi, détection de variants en faibles quantités
- Workflow sans PCR, pas de duplicats, pas de biais
- Adaptateurs à usage unique, pas de contaminations croisées
- Compatible avec eukaryotes et bactéries
- Echantillon: 1-1000 cellules ou 1-10 ng ng d'ADN Eu / 6-100 pg d'ADN Bactérien
- Rendement WGA 15-40 µg selon taille de l'échantillon
- Concentration librairie : 2 nM-35 nM selon la quantité de WGA utilisé



Librairie NGS sans PCR réalisée sur Cellule unique en seulement 3 heures. Haute fidélité et couverture maximale du genome.

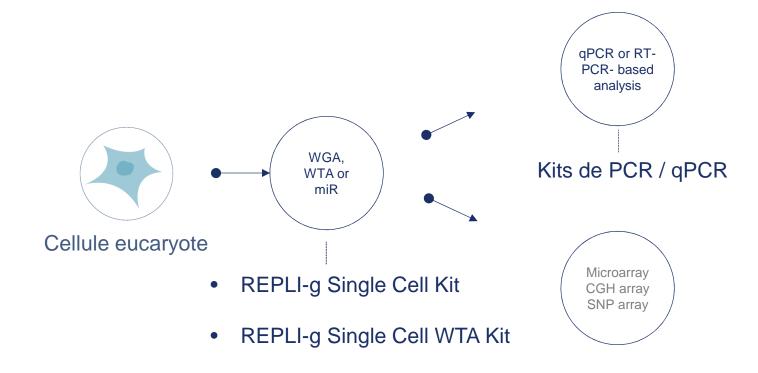
Single-cell whole transcriptome amplification (WTA)

Comprendre les regulations de l'expression des gènes dans une cellule unique

QIAseq FX Single Cell RNA Library kit

RNAseq sur plateforme Illumina: cancer, neuroscience, maladie infectieuses, virologie, développement

- Analyse d'expression de gènes, d'hétérogénéité cellulaire, découverte et quantification de transcrit
- 5.5 heures, 1 heure de manip en cumulé


Bénéfices

- ARNm et ARN non codant
- Pas de PCR, pas du duplicat
- Workflow complet, de la cellule à la librairie (RT, ADNc, librairie)
- Prix catalogue bas, permettant l'analyse de plus d'échantillons pour le même budget (pouvoir statistique)
- Amplification Whole transcriptome High-fidelity: beaucoup moins d'erreurs
- Echantillon: 1 à 1000 cellules, 10 pg-10 ng d'ARN
- Rendement minimum de 26 μL avec une concentration supérieure à 4 nM. Rendement minimum de la WTA: ~15 μg d'une seule cellule eukaryote. Congélation possible.

Solution complète pour le RNAseq sur cellule unique. Création de librairie avec un biais réduit, étude des ARNm et des ARN non codants.

miScript Single Cell qPCR Kit

La bonne solution pour votre projet

REPLI-g Single Cell Kit

ADN amplifié Pas de PCR

- Le gold standard pour les applications sensibles
- Haut rendement, conservation de l'ADN pour de futures analyses
- Construction de librairies de haute qualité
- Analyses possibles :
 - o NGS
 - Microarray
 - o PCR
 - Multiple analyses from 1 single cell

(1) Zhang, C.-Z. et al. (2015) Chromothripsis from DNA damage in micronuclei. Nature, published online 27 May 2015. 6, 6822.

REPLI-g WTA Single Cell Kit

ADNc amplifié Pas de PCR

- Conservation des ARNm d'une cellule unique sous forme d'ADNc (MDA multiple displacement amplification)
- Compatible avec la qPCR, le NGS ou les microarray
- Protocole combinant les PolyA et les random primers (conservation de tous les ARN)
- Analyses possibles :
 - o NGS
 - Microarray
 - o PCR
 - Multiple analyses from 1 single cell

Portail « Single Cell » : www.qiagen.com/SingleCellAnalysis

Shop

Products

Resources

Support

About QIAGEN

Careers

Hello Hélène BAUBY .

Search

Contact us

Q.

Resources

- ▶ GeneGlobe
- Search Resources
- Knowledge Area

Liquid Biopsy

Reproducibility through automations

Sample Quality Control

Microbiology & Microbiome

Single Cell Analysis

RNA Sequence Analysis of Single Cells by NGS

Whole Genome Sequencing of Bacterial or Eukaryotic Single Cells

Targeted Sequencing Starting with Single Cells

Array and PCR-based Analysis of Single Cells

miRNA qPCR-based Analysis

Single Cell Knowledge Hub

- Technologies
- ▶ e-Learning
- Mol. Biol. Methods
- Find & Order
- ▶ Event Calendar
- ▶ Product Selection Guides
- Innovations & Insights

.

Single cells, multiple details – simplify the complexity! Every cell is unique. QIAGEN's solutions accelerate single cell analysis in diverse research areas, from oncology, immunology and microbiology to neuroscience, stem cell and developmental biology, allowing you to access the smallest dimensions of biological research. Decipher the genomic and transcriptomic differences between cells and uncover the heterogeneity in your sample for new biological insights. Enter the world of the single cell through this dedicated resource site and explore single cell applications and discover products that best match your needs. Take advantage of our extensive knowledge hub to access informative resources including webinars, posters, videos and scientific publications.

RNA Sequence Analysis of Single Cells by NGS

Discover more with greater power with our robust and complete end-to-end solution, making single cell RNA-seg streamlined and routine.

. Gain an understanding of single cells

Whole Genome Sequencing of Bacterial or Eukaryotic Single

Contact QIAGEN

Cart

- Global contacts
- Technical Service
- Customer Care

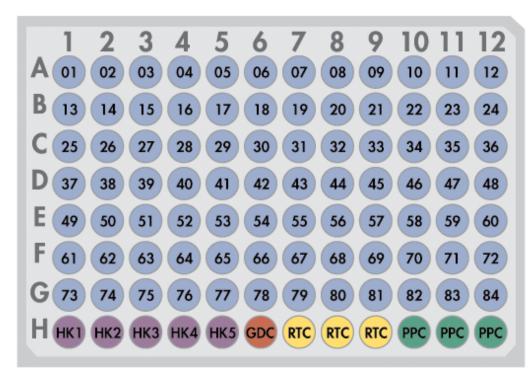
New Video! MDA is the Preferred Method for WGA

Discover why

Single cell whole genome libraries

 Discover the QlAseq FX Single Cell DNA Library Kit

RNA-seq libraries from single cells



Etude de l'expression de gènes : Système RT2 Profiler PCR

Comment se présente une plaque RT2 Profiler ?

- Housekeeping genes
- Genomic DNA control

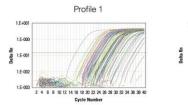
Reverse transcription controls

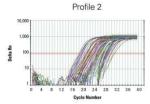

Positive PCR controls

- 84 gènes d'intérêts (spécifique d'une voie de signalisation)
- 5 gènes de ménages
- GDC : contrôle de contamination ADNg
- RTC : contrôle de la transcription inverse
- PPC : contrôle positif de la PCR

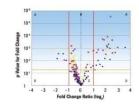
Tous les couples de primers ont été développés pour des performances optimales Toutes les plaques sont validées à la paillasse

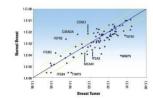
Protocole expérimental


1. Convert Total RNA to cDNA.



Add cDNA to RT² qPCR Master Mix & Aliquot Mixture Across PCR Array.




3. Run in Your Real-Time PCR Instrument.

4. Data Analysis.

Synthèse des ADNc

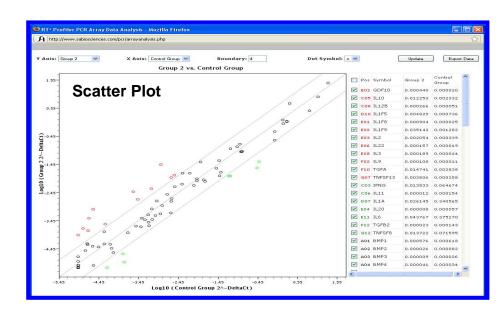
- Genomic DNA Removal Step (5 min)
- Reverse Transcription Step (20 min)

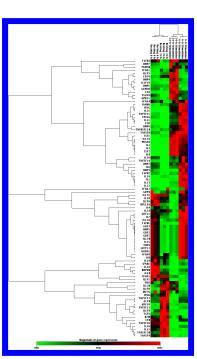
Chargement de la plaque

- 1 échantillon par plaque
- Quelques minutes à la pipette multicanaux

Run de qPCR – 40 cycles

- Conditions standards
- Tous les instruments
- 2 heures


Analyse des données


 Quelques minutes pour le contrôle qualité, la normalisation et les calculs de ΔΔCt

- Logiciel gratuit accessible en ligne
- Résultats en Fold changes
 - Méthode ΔΔC(t) Method
- Analyse complète
 - Scatter Plot
 - Volcano Plot
 - Multi-Group Plot
 - Clustergram

Instruments compatibles: formats 96 et 384 puits

Applied Biosystems (ABI)

Standard 96-Well Blocks: 7000, 7300, 7500, 7700

■ FAST 96-Well Blocks: 7500, 7900HT

FAST 384-Well Block: 7900HT

StepOnePlus

Bio-Rad

■ *iCycler*, MyiQ, iQ5, CFX96

MJ Research: Opticon, Opticon 2, Chromo 4

Stratagene

Mx3000p, Mx3005p, Mx4000p

Roche

LightCycler 480

Eppendorf

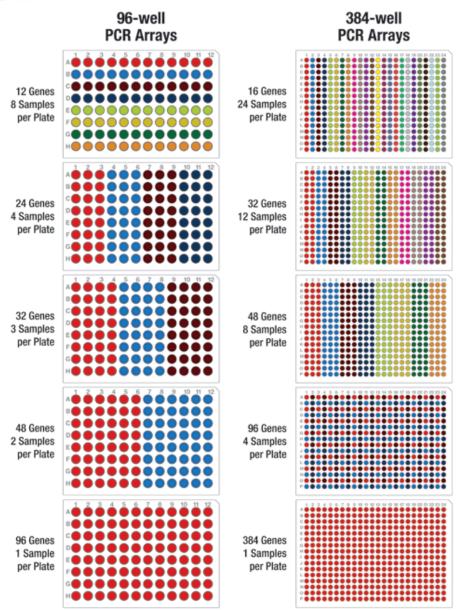
Masterplex ep

Fluidigm

Biomark

Takara

TP800



Plaques RT2 à façon

Analyse des gènes importants pour vous

- N'importe quel instrument
- Plaques Custom prêtes en 2 à 3 semaines
- Analyse toujours gratuite

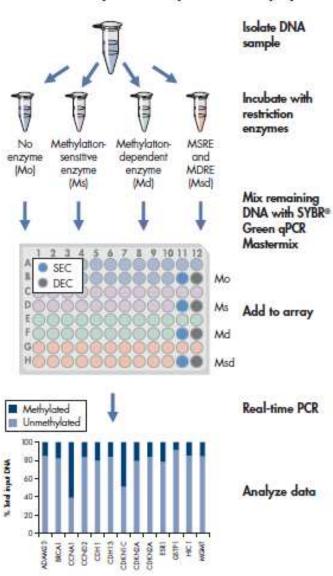
Exemples de plaques – différentes espèces

Cancer and Apoptosis	Cytokines & Inflammation	Development & Stem Cells
<u>Apoptosis</u>	Inflammatory Cytokines	Stem Cells
Cell Cycle	Th17 for Inflammation (NEW!)	Wnt Signaling
Human miRNA Array (NEW!)	Common Cytokines	Notch Signaling
Breast Cancer & Estrogen Receptor	<u>Chemokines</u>	TGFβ / BMP Signaling
Tumor Metastasis	NF-κB Signaling Pathway	Endothelial Cell Biology
Cancer PathwayFinder	<u>Th1-Th2-Th3</u>	<u>Osteogenesis</u>
<u>Angiogenesis</u>	TNF Ligands	Growth Factors
Cancer Drug Resistance	Toll-like Receptors	ECM & Adhesion
Signal Transduction	Toxicology & Drug Metabolism	Neuroscience
Signal Transduction PathwayFinder	Drug Metabolism	Neuroscience Ion Channels
NFkB Signaling	Drug Phase I Enzymes	Neurotransmitter Receptors
Jak / Stat Signaling	Drug Transporters	Neurotrophins & Receptors
DNA Damage Signaling	Oxidative Stress	Neurogenesis and Neural Stem Cell
Insulin Signaling	Stress & Toxicity	
MAP Kinase Signaling	Other Diseases	Custom PCR Arrays
cAMP / Calcium Signaling	<u>Atherosclerosis</u>	96-Well Custom Arrays
p53 Signaling	<u>Diabetes</u>	384-Well Custom Arrays
	Complete PCR Array List	

Les rôles de l'épigénétique en biologie
Technologies de détection des modifications épigénétiques

Types de modifications épigénétiques et détection

Modifications épigénétiques


- Méthylation de l'ADN
- □ Dé-acétylation des histones
- □ miRNA

Méthodes de détection de la méthylation

- □ PCR méthylation-spécifique (MSP)
- □ Conversion bisulfite / séquençage Pyroséquençage, NGS
- Analyses par enzymes méthylation spécifiques/ dépendantes

Détection de la méthylation : Enzyme méthylation sensible / dépendante

Workflow of EpiTect Methyl II PCR Array System

Basée sur la détection quantitative de molécules d'ADN restantes après traitement avec des enzymes de restriction méthylation-sensibles (MSRE) et méthylation dépendantes (MDRE)

Enzyme	Fonctionnement	ADN restant
MOCK	Pas d'enzyme	Fraction entière
MSRE	Digère les copies non-méthylées et partiellement méthylées	Fraction méthylée
MDRE	Digère les copies méthylées et partiellement méthylées	Fraction non méthylée
MSRE & MDRE (Double)	Digère les copies non-méthylées, partiellement méthylées et méthylées	Fraction résistante aux enzymes de restriction

Maladies & voies de signalisation : DNA Methylation PCR Arrays

Disease-focused Pathway-focused

Breast Cancer Apoptosis

<u>Cancer miRNA</u> <u>Cell Cycle</u>

Colon Cancer Cytokine Production

Epithelial to Mesenchymal Transition

(EMT)

Gastric Cancer Homeobox (HOX) Genes

Leukemia & Lymphoma Inflammatory Response and Autoimmunity

DNA Repair

<u>Liver Cancer</u> <u>Mental Disorders</u>

<u>Lung Cancer</u> <u>Notch Signaling Pathway</u>

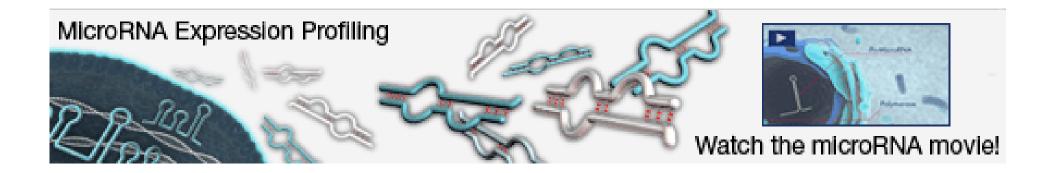
Melanoma Polycomb & Trithorax Complexes

Prostate Cancer Stem Cell Transcription Factors

<u>Tumor Suppressor Genes</u> <u>Stress & Toxicity</u>

T Cell and B Cell Activation

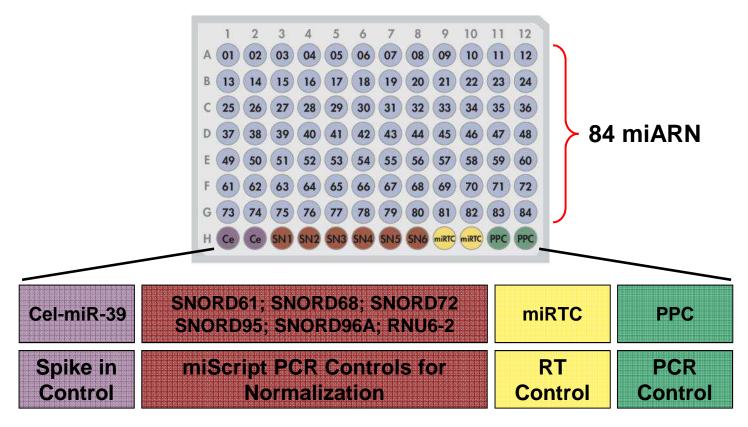
T Helper Cell Differentiation


Tumor Suppressor Genes

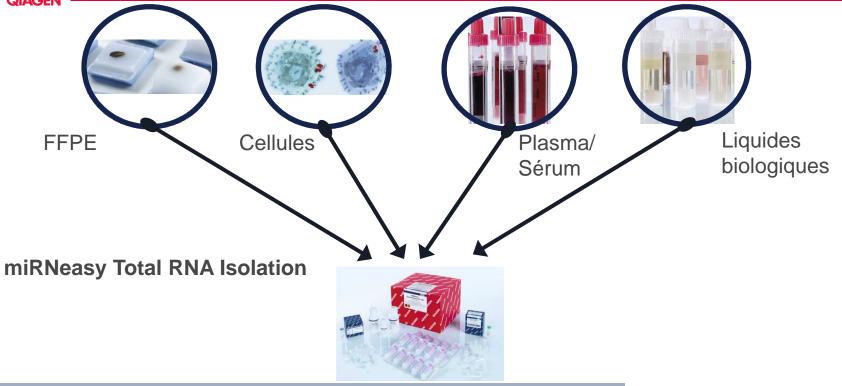
Toll Like Receptor Signaling

TGF-β/BMP Signaling

Wnt Signaling



Etude des microARN – Système miScript


miScript miRNA PCR Arrays Voies de signalisation : 84 miRNAs + 12 Contrôles

- Cel-miR-39
 - □ Méthode de normalisation alternative : Spike-In Syn-cel-miR-39 miScript miRNA Mimic
- miScript PCR Controls
 - □ Méthode de quantification $\Delta\Delta C_T$
- miRNA reverse-transcription control (miRTC)
 - □ Evaluation de la performance de l'étape de RT
- Positive PCR control (PPC)
 - □ Evalusation de la performance de l'étape de PCR

Echantillon : n'importe quel échantillon, n'importe quelle quantité

miScript PreAmp

- Permet le profiling de miARN à partir de quantités très limitées
 - Cellules ou tissus: 1 ng d'ARN
 - Fluides:
 - Sérum/plasma: 50 μL
 - Urine
 - Liquide cérébro-spinal
 - Humeur aqueuse

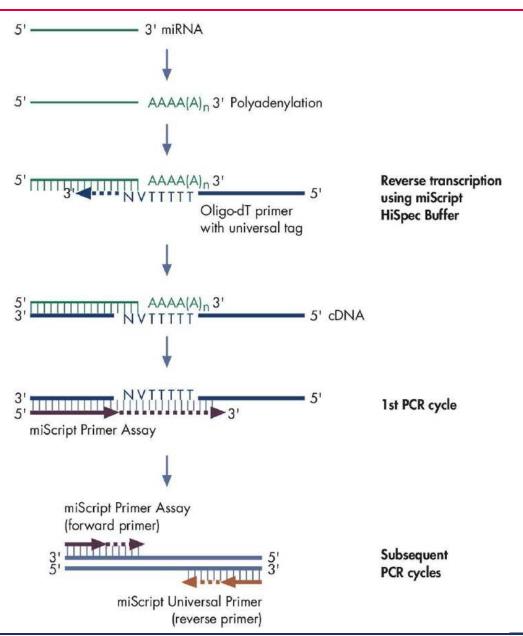
miScript PCR System

Système complet de quantification des miARN

- 1. miScript II RT Kit Universel
- 2. miScript miRNA PCR Arrays miRNome v16, v21

Voies de signalisation

3. miScript PreAMP Kit


Optional step for small or precious samplesFull miRNome profiling from as little as 1 ng RNA

4. Assays

miScript Primer Assays miScript Precursor Assays

- 5. miScript SYBR Green PCR Kit
- 6. miScript miRNA PCR Array data analysis software Logiciel d'analyse gratuit et facile à utiliser

miScript II RT Kit

Plaque de qPCR miScript

Pertinence biologique

miFinder

Cancer PathwayFinder

Brain Cancer

Breast Cancer

Ovarian Cancer

Liver miFinder

Apoptosis

Cell Differentiation & Development

Immunopathology

Inflammatory Response &

Autoimmunity

Diabetes

Neurological Development &

Disease

T-Cell & B-Cell Activation

Prostate Cancer

Cardiovascular Disease

Serum & Plasma

100% validé

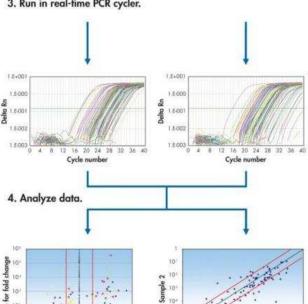
Chaque primer est validé à la paillasse

Chaque plaque est contrôlée Remise à jour régulière pour coller aux découvertes publiées

Personnalisable (Custom) Conversion d'espèce

Protocole miRNA PCR Array

1. Convert miRNA to cDNA.



2. Combine cDNA to QuantiTect SYBR Green PCR Master Mix, miScript Universal Primer, and water. Aliquot mixture across miScript PCR Array.

3. Run in real-time PCR cycler.

Fold change ratio (log2)

- Synthèse des ADNc depuis les **miARN**
 - 1 heure
- Chargement de la plaque (à la pipette multicanaux)
 - **Quelques minutes**
- Programme de qPCR 40 cycles
 - 2 heures
- Analyse des données
 - 30 minutes

Système miScript : plus que de la qPCR

- Les outils miScript pour les études fonctionnelles
 - miScript Target Protectors
 Protection d'une seule cible d'un miARN donné
 - miScript miRNA Mimics
 ARN synthétique simple brin mimant un miARN connu
 - miScript miRNA Inhibitors

 ARN synthétique simple brin inhibant un miARN connu
- Etude des effets des Mimics et Inhibitors : modification de l'expression des gènes cibles

Merci!

Des questions?

Contact: helene.bauby@qiagen.com