

Molecular methods to characterize the microbiota in the mouse tissues

Olivier Bouchez, GeT-PlaGe, INRA Toulouse http://get.genotoul.fr @GeT_Genotoul

Who are we?

- Genomic and transcriptomic core facility spreads on
 - 5 sites GeT in Toulouse
 - 1 site Oncopole

- IBISA Label
- INRA strategic core facility
- IS09001:2008 & NFX50-900 Certifications
- Partnership with Genotoul Bioinformatic core-facility

The GeT Core Facility

Our missions:

- ✓ To provide innovating technologies for genome analysis to the scientific community
- \checkmark To develop new protocols, new methodologies, acquire expertise and train to those technologies
- \checkmark To animate workshops for user network

Technologies available to the scientific community :

- ✓ Quantitative PCR: Fluidigm BioMark, Life tech QS6, Viia7...
- ✓ Genotyping: Fluidigm BioMark, Agilent, Affymetrix...
- ✓ Microarrays (expression): Agilent, Affymetrix
- ✓ Automation: TECAN EVOs, Agilent Bravo, Fluidigm Access Array
- ✓ Sanger Sequencing: ABI3130XL, ABI3730
- ✓ Single Cell Analysis: Fluidigm C1
- ✓ Next Generation Sequencing: Life tech Ion Proton, PGM, Illumina MiSeq, HiSeq3000, PacBio RSII

Génome et Transcriptom

What is Metagenomics?

Metagenomics

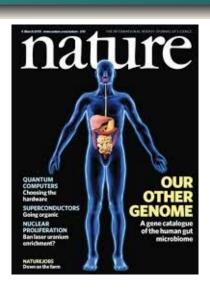
Metagenomics is the study of **genetic material** recovered directly from biological samples.

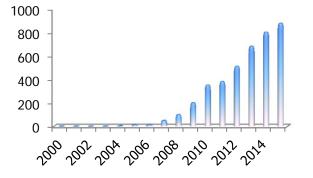
Traditionnal microbiology : clonal cultures, 16S gene cloning and sequencing, $\ldots =>$ the vast majority of microbial diversity has been missed by cultivation-based methods

Recent studies : shotgun or PCR directed sequencing to get largely unbiased samples of all genes from all members

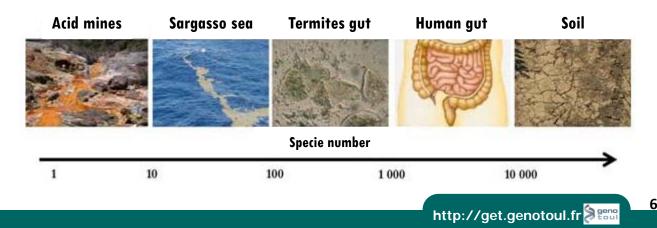
Because of its ability to **reveal the previously hidden diversity** of microscopic life, metagenomics offers a **powerful lens** for viewing the microbial world.

https://en.wikipedia.org/wiki/Metagenomics





Metagenomics

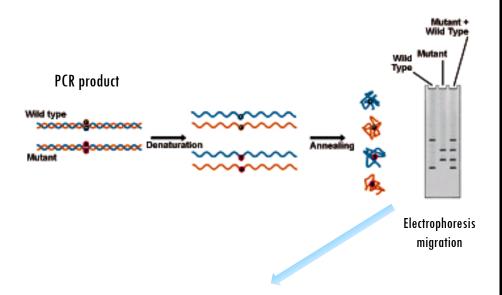

✓ Human Gut : 100 billions bacteria/1000 species (10 x more than human cell number)

 \checkmark Soil: several thousand of different species/g of soil

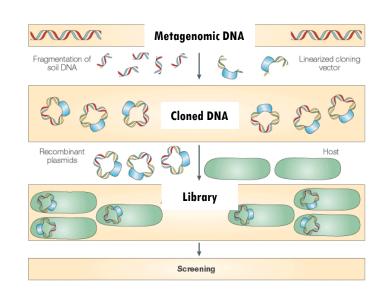
Metagenomics

Bacterial communities are involved in:

- \checkmark Diabetes
- ✓ Cancers
- ✓ Autism
- \checkmark Inflammatory responses
- \checkmark Digestion
- \checkmark Site remediation
- \checkmark Fermentation
- \checkmark Methanisation
- ✓ Plant production✓


genotoul

Examples of previous technologies used in microbiology Studies

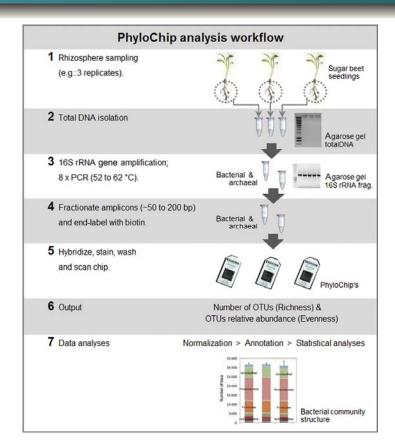

SSCP & Cloning

SSCP = single strand conformation polymorphism

Genetic fingerprinting : allows the observation of differences between communities, but not assignation

Cloning

Nature Reviews | Microbiology


Study clone by clone : limited information, very time consuming and expensive

Modified from Rolf Daniel, Nature Reviews Microbiology, 2005

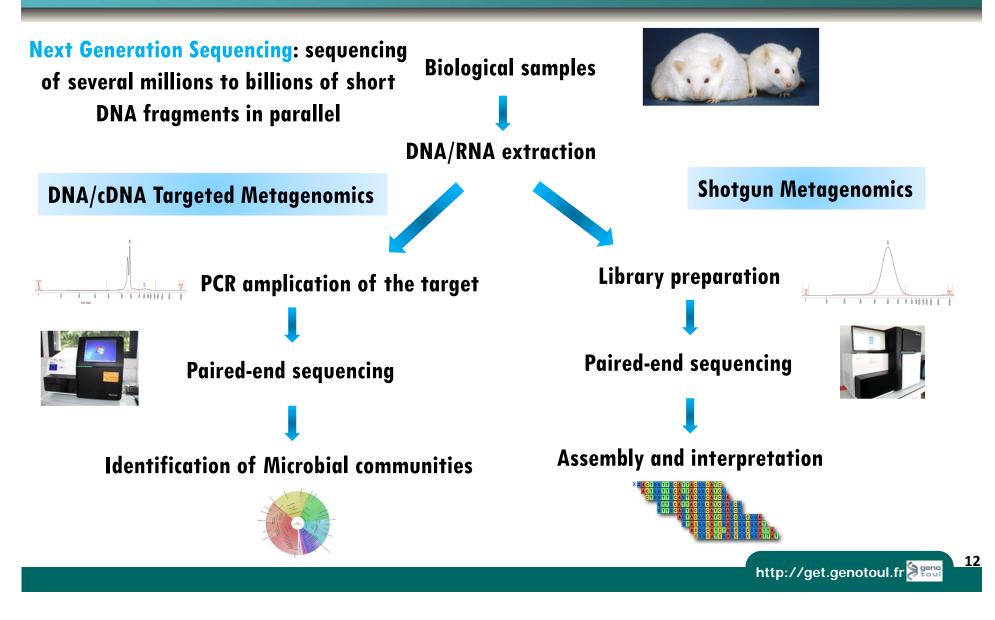
qPCR & PhyloChip

> Quantification of selected species Very sensitive

Studies only the species represented on the Chip (\sim 8000, 16S) Quantification not so easy because of fluorescence saturation

Mendes et al., FEMS Microbiology Reviews, 2013

Singh*et al.,* Meta Gene, 2014



Génome et

Next Generation Metagenomics

How to do Next Generation Metagenomics?


How to choose the approach I need?

	Targeted sequencing	Shotgun Sequencing
Informations	Taxonomic composition and phylogenetic structure of microbial communities (OTU)	Fonctionnal characterisation of bacterial communities, draft genomes construction
Applications	Population identification	New/unknown member detection, new gene identification
Sensitivity	Extremely sensitive	Needs much more sequencing depth to obtain the same sensitivity as targeted sequencing (=€€€€€)
Biases	PCR induced biases: the amplification efficiency could be different between communities	Sequence composition (GC %): sequencing in GC rich regions is not optimal

Sequencing depth impact on result interpretation

Sequencing depth = number of sequences per sample

Génome et Transcriptom

Targeted Metagenomics

Targeted Metagenomics known biases

- ✓ DNA extraction kits/protocols
- ✓ PCR
 - Polymerase efficiency
 - Polymerase contaminations
 - Use of degenerated primers: non homogenous amplification
- ✓ Databases exhaustivity
- **Analysis softwares**
- ✓ 16S copy numbers (1 to 15, depending on the bacteria species)
- Horizontal gene transferts (Ex : *B. globisporus* and *B. psychrophilus* show 99,8% identity on 16S, but \checkmark only 23 to 50 % identity at genome level)

Comparative Evaluation of DNA Extraction Methods from Feces of Multiple Host Species for Downstream Next-Generation Sequencing

Marcia L. Hart¹, Alexandra Meyer², Philip J. Johnson³, Aaron C. Ericsson^{1,4,5}*

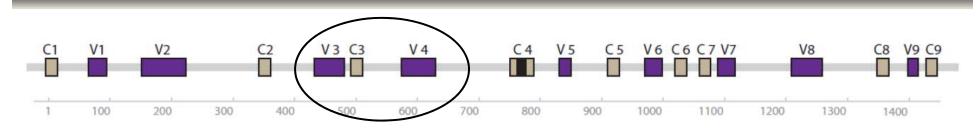
Targeted Metagenomics known biases

D'Amore et al. BMC Genomics (2016) 17:55 DOI 10.1186/s12864-015-2194-9

RESEARCH ARTICLE

Open Access

A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling


Rosalinda D'Amore¹⁺, Umer Zeeshan Ijaz²⁺, Melanie Schirmer², John G. Kenny¹, Richard Gregory¹, Alistair C. Darby¹, Migun Shakya³, Mircea Podar⁴, Christopher Quince^{5*} and Neil Hall^{1*}

Impact of the sequencer and protocols on the results:

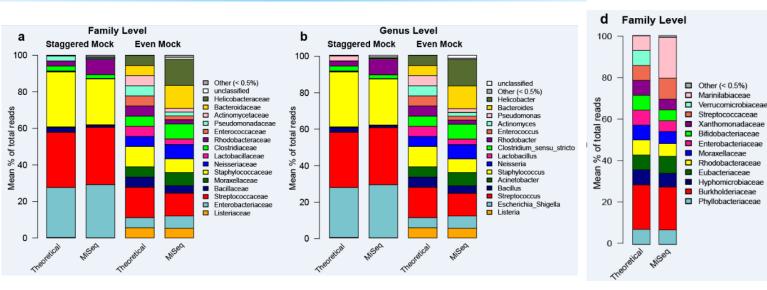
- ✓ The choice of sequencing platform and experimental design needs to be taken into consideration in the early stage of a project
- ✓ A pilot experiment should be necessary to choose the target (ie which 16S region is the best for my study to identify associated microbial communities)

Illumina MiSeq 16S sequencing example

- Which region of the 16S to target?
- \checkmark Today, the v3-v4 is to most used
- ✓ 400 to 500 pb PCR product

Illumina MiSeq

Max lenght: 2 x 300 pb


Max Throughput: 15 GB

Pipeline validation against mock communities

Results obtained in collaboration with the VAIOMER start-up Lluch *et al.* 2015, PloS-ONE

gDNA mock communities

Plasmid mock communities

vaiomer

Good correlation between theory and reality

Genus Level

unclassified

Other (< 0.5%)</p>

Prostheobacter

Eubacterium

Xanthomonas

Lactococcus

Cupriavidus

Bifidobacterium

Acinetobacter

Paracoccus

Aminobacter

Ralstonia

Devosia

Escherichia Shigella

Alkaliflexus (Geofilum)

е

100

80

gs

total

đ

an

Me

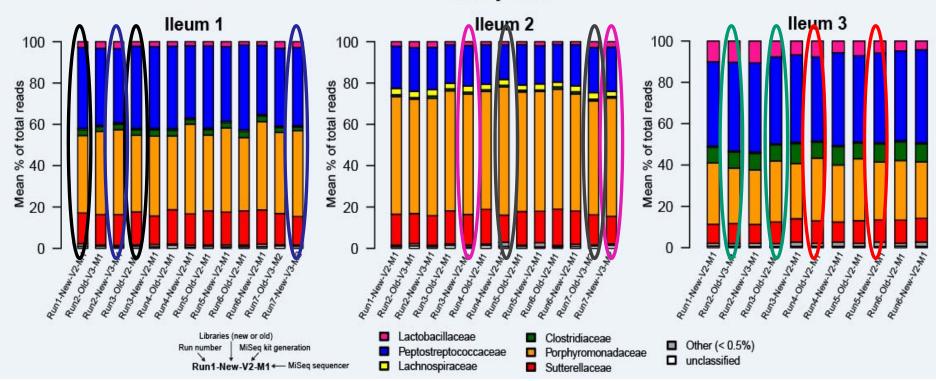
× 40

20

0

60 Leg

Replicability and reproductibility

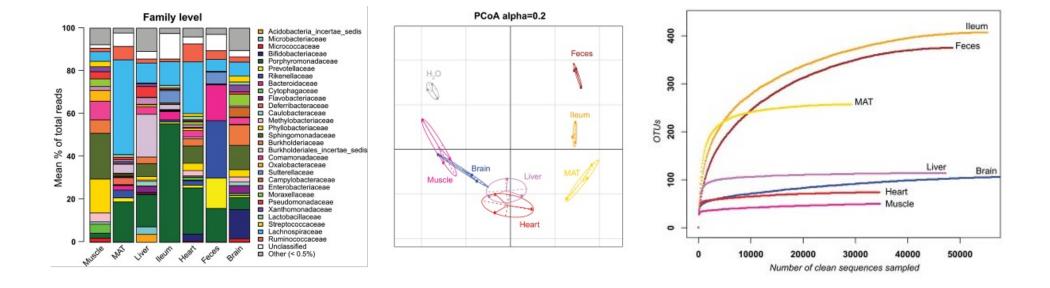


Low variation between replicates

http://get.genotoul.fr

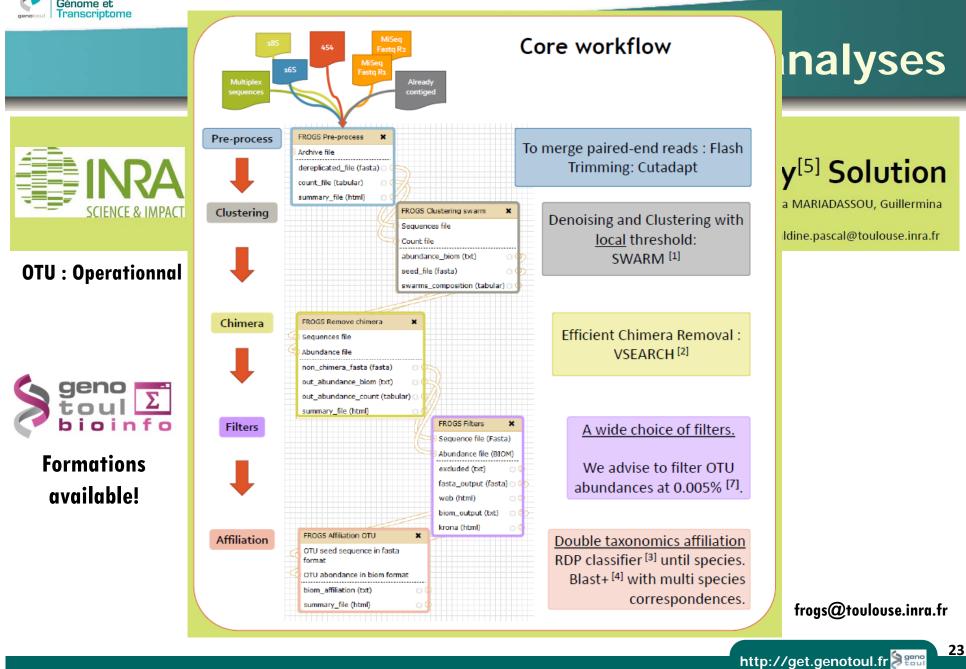
Replicability and reproducibility

Family Level


Same library, same chemistry, same sequencer Same library, different chemistry, same sequencer Different library, same chemistry, same sequencer Different library, different chemistry, different sequencer

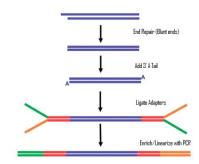
Very low variability, good reproducibility

21



16S metagenomics on diverse tissue samples

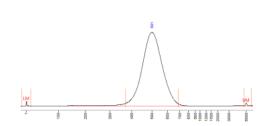
Detection of bacteria in diverse mouse tissues Taxonomic profiles different between tissues and different from H₂O control Very high diversity in Ileum, Feces and adipose tissues (MAT)



genotoul

Shotgun Metagenomics

Principle



DNA/RNA

Shearing (sonication, nebulization, enzymatic, mecanic) Or reverse transcription

Sheared DNA or cDNA

End repair, A-tailing, adaptaterligation, optional PCR

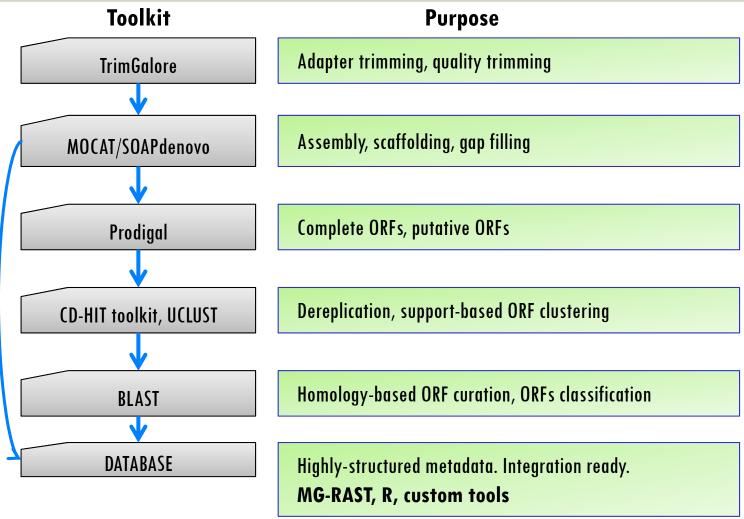
Sequencing ready library

Sequencing

Illumina HiSeq3000 2,4 billion paired-end reads/run

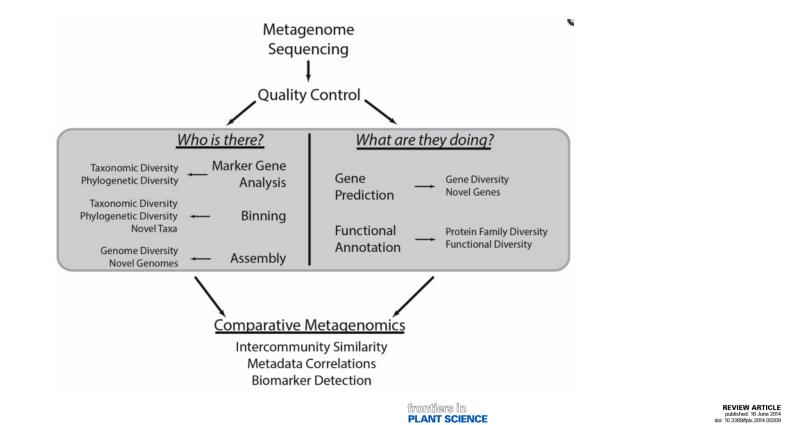
Sequence data

Bioinformatic analyses


Interpretation

25 http://get.genotoul.fr 🗦 📟

Example of an informatic pipeline



Pavel Senin

26

Data interpretation

An introduction to the analysis of shotgun metagenomic data

http://get.genotoul.fr

27

Thomas J. Sharpton*

Department of Microbiology and Department of Statistics, Oregon State University, Corvallis, OR, USA

First large study published by the MetaHIT consortium

Vol 464 4 March 2010 doi:10.1038/nature08821

nature

ARTICLES

A human gut microbial gene catalogue established by metagenomic sequencing

Junjie Qin¹*, Ruiqiang Li¹*, Jeroen Raes^{2,3}, Manimozhiyan Arumugam², Kristoffer Solvsten Burgdorf⁴, Chaysavanh Manichanh⁵, Trine Nielsen⁴, Nicolas Pons⁶, Florence Levenez⁶, Takuji Yamada², Daniel R. Mende², Junhua Li^{1,7}, Junming Xu¹, Shaochuan Li¹, Dongfang Li^{1,8}, Jianjun Cao¹, Bo Wang¹, Huiqing Liang¹, Huisong Zheng¹, Yinlong Xie^{1,7}, Julien Tap⁶, Patricia Lepage⁶, Marcelo Bertalan⁹, Jean-Michel Batto⁶, Torben Hansen⁴, Denis Le Paslier¹⁰, Allan Linneberg¹¹, H. Bjørn Nielsen⁹, Eric Pelletier¹⁰, Pierre Renault⁶, Thomas Sicheritz-Ponten⁹, Keith Turner¹², Hongmei Zhu¹, Chang Yu¹, Shengting Li¹, Min Jian¹, Yan Zhou¹, Yingrui Li¹, Xiuqing Zhang¹, Songgang Li¹, Nan Qin¹, Huanming Yang¹, Jian Wang¹, Søren Brunak⁹, Joel Doré⁶, Francisco Guarner⁵, Karsten Kristiansen¹³, Oluf Pedersen^{4,14}, Julian Parkhill¹², Jean Weissenbach¹⁰, MetaHIT Consortium[†], Peer Bork², S. Dusko Ehrlich⁶ & Jun Wang^{1,13}

To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence from faecal samples of 124 European individuals. The gene set, ~150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively.

Mouse gut metagenome

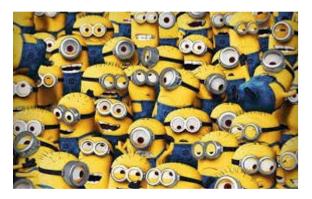
RESOURCE

nature biotechnology

A catalog of the mouse gut metagenome

Liang Xiao^{1,16}, Qiang Feng^{1,2,16}, Suisha Liang^{1,16}, Si Brask Sonne², Zhongkui Xia¹, Xinmin Qiu¹, Xiaoping Li¹, Hua Long³, Jianfeng Zhang¹, Dongya Zhang¹, Chuan Liu¹, Zhiwei Fang¹, Joyce Chou³, Jacob Glanville³, Qin Hao², Dorota Kotowska², Camilla Colding², Tine Rask Licht⁴, Donghai Wu⁵, Jun Yu⁶, Joseph Jao Yiu Sung⁶, Qiaoyi Liang⁶, Junhua Li¹, Huijue Jia¹, Zhou Lan¹, Valentina Tremaroli⁷, Piotr Dworzynski⁸, H Bjørn Nielsen⁸, Fredrik Bäckhed^{7,9}, Joël Doré^{10,11}, Emmanuelle Le Chatelier¹¹, S Dusko Ehrlich^{11,12}, John C Lin³, Manimozhiyan Arumugam^{1,9}, Jun Wang^{1,2,13,14}, Lise Madsen^{1,2,15} & Karsten Kristiansen^{1,2}

We established a catalog of the mouse gut metagenome comprising ~2.6 million nonredundant genes by sequencing DNA from fecal samples of 184 mice. To secure high microbiome diversity, we used mouse strains of diverse genetic backgrounds, from different providers, kept in different housing laboratories and fed either a low-fat or high-fat diet. Similar to the human gut microbiome, >99% of the cataloged genes are bacterial. We identified 541 metagenomic species and defined a core set of 26 metagenomic species found in 95% of the mice. The mouse gut microbiome is functionally similar to its human counterpart, with 95.2% of its Kyeto Encyclopedia of Genes and Genomes (KEGG) orthologous groups in common. However, only 4.0% of the mouse gut microbial genes were shared (95% identity, 90% coverage) with those of the human gut microbiome. This catalog provides a useful reference for future studies.

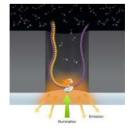

Conclusions

Targeted Metagenomics:

- \checkmark Known biases, need to be take into account during analysis
- \checkmark Pilot experiment necessary to calibrate the study
- ✓ Very sensitive
- ✓ Inexpensive
- \checkmark Easy preparation and sequencing
- \checkmark Bioinformatic: dedicated tools, fast, easy to manipulate

Shotgun Metagenomics:

- ✓ Less biases
- \checkmark More informations provided from this application
- \checkmark Less sensitive
- ✓ Expensive
- \checkmark Preparation and sequencing easy
- \checkmark But bioinformatic is the bottleneck, slow, need to be expert to manipulate the data


3rd generation sequencers: the future?

Longer reads (>10 kb) = better taxonomic resolution

genotoul

Thanks!

LANGUEDOC-ROUSSILLON

